自立基板上 GaN のステップバンチング状モフォロジー形成プロセス

The process of the step bunching like morphology of GaN grown on free-standing substrate

名大未来材料・システム研究所¹,名大院工²,

名大 VBL³, 物質・材料研究機構⁴, 名大・赤﨑記念研究センター⁵,

^O渡邊 浩崇¹, 新田 州吾¹, 安藤 悠人², 出来 真斗^{2,3}, 田中 敦之^{1,4}, 本田 善央¹,

天野 浩 1,3,4,5

Nagoya Univ. (NU) IMaSS¹, Dept. of Electronics., NU², NU VBL³, NIMS⁴, NU ARC⁵

^OHirotaka Watanabe¹, Shugo Nitta¹, Yuto Ando², Manato Deki^{2,3}, Atsushi Tanaka^{1,4}, Yoshio Honda¹,

and Hiroshi Amano^{1,3,4,5}

E-mail: h.watanabe@nagoya-u.jp

GaN は高い絶縁破壊電界および電子飽和速度を有することから、パワーデバイス材料として期待されている。我々はこれまでに自 立 GaN 基板上に MOVPE 成長した p-n 接合ダイオードについて、 エミッション顕微鏡を用いてアバランシェ降伏時の発光像が結晶成 長後に観測されるステップバンチング状の表面モフォロジーを反映 していることを報告している[1]。また、Fujikura らによって HVPE で は上記の表面モフォロジーの発生は GaN 基板のオフ角度を 0.4° 以上にすれば抑制できるという報告もされている[2]。さらに本研究 グループでは基板のオフ角度分布と MOVPE エピ膜のステップバン チング状のモフォロジーの相関について明らかにしてきた[3]。しか しながら、ステップバンチング状モフォロジーの形成プロセスについ てはいまだに詳しい報告例がない。そこで、本研究では GaN 基板 上 GaN の成長過程において表面状態がどのように変化してステッ プバンチング状の形状に至るか検討を実施したので報告する。

実験は HVPE により製造された市販の 2 インチ GaN 基板上に MOVPE 法を用いて成長レート 3.3µm/h、V/III 比 1997、成長温度 1030℃にて、nGaN(Si:1e+16cm⁻³)を 300nm 成長し、ウエハの評価を 行った。その後、再成長 700nm(total 1µm)、2000nm(total 3 µm)、 2000nm(total 5 µm)と3 回の再成長後の表面状態についての評価 を行った。GaN 基板の中心オフ角はm軸方向に 0.4°のものを使用 しているが、結晶の湾曲による面内分布を持つためマッピングを行 って各点でのオフ角を算出した。

Fig.1 は GaN 基板のオフ角 0.34°の位置における各層膜厚(a): 300nm、(b):1µm、(c):3µm における表面状態を共焦点顕微鏡の DIC(Differential Interference Contrast)像で観察したものである。 成長膜厚の増加に伴い表面モフォロジーが変化していることがわか る。成長初期の(a)においては、三角形形状のヒロックが見られ、(b) では三角形のモフォロジーが大きくなり、また密度も増加している。

一部でヒロックが結合したものがみられる。さらに成長膜厚が厚く なると線状につながってステップバンチング状のモフォロジーが形 成された。これら成長膜厚と表面状態の結果から成長初期に発生 する三角形状のヒロックが、線状につながったモフォロジーの発生 に関与していることが示唆される。講演では、この三角形のヒロックと 線状モフォロジーの形状、さらに結晶方位について考察する。

【謝辞】本研究は文部科学省「省エネルギー社会の実現に資 する次世代半導体研究開発」事業 JPJ005357 の助成を受け たものです。

[1]川崎他, 応用物理学会第 80 回応用物理学会秋期学術講演会, 10a-M121-3 (2019).

[2]Fujikura et al., Appl. Phys. Lett. 113, 152101 (2018).

[3] 渡邉他, 応用物理学会第 67 回応用物理学会春期学術講演会, 12a-A302-1 (2020).

Fig.1 DIC image of GaN surface grown on GaN substrate with 0.34° in the off angle(a)total 300nm(b) total 1µm (c) total 3µm