ベータ型(AlGa)₂O₃ チャネル電界効果トランジスタ

Demonstration of β-(AlGa)₂O₃-channel metal-semiconductor field-effect transistors 筑波大¹, 佐賀大², MIT大³ [○]奥村 宏典 ^{1,3}, 加藤 勇次², 大島 孝仁², Tomas Pálacios³ Tsukuba Univ.¹, Saga University², MIT³, °Hironori Okumura^{1,3}, Yuji Kato², Takayoshi Oshima², and Tomas Pálacios³

E-mail: okumura.hironori.gm@u.tsukuba.ac.jp

酸化ガリウム(Ga_2O_3)は、約 5 eV のバンドギャップと 8 MV/cm の絶縁破壊電界強度を有することから、パワーデバイス用半導体材料に適している。特に β ガリア構造を有する Ga_2O_3 バルク結晶は、溶液法により作製可能であることから、低価格化が期待されている。 β - Ga_2O_3 は、 Al_2O_3 との混晶により、さらに絶縁破壊電界強度を大きくすることができる。今回、n 型 β -($Al_{0.16}Ga_{0.84}$) $_2O_3$ 層をチャネルとした電界効果トランジスタの作製を行った。

今回作製したデバイス構造を図1(a)に示す。プラズマ援用分子線エピタキシ法により、半絶縁性 β - $Ga_2O_3(010)$ 基板上に $(Al_{0.16}Ga_{0.84})_2O_3$ 層を結晶成長した。ドナー不純物としてSnを用いた。作製した $(AlGa)_2O_3$ 層の逆格子空間マッピングを図1(b)に示す。

 $(Al_{0.16}Ga_{0.84})_2O_3$ 層が $Ga_2O_3(010)$ 基板 上にコヒーレントに成長している のが分かる。

(AlGa) $_2$ O $_3$ -MESFET のドレイン電流・ドレイン電圧特性を図 $_2$ (a)に示す。ゲート電圧でドレイン電流を制御できている。ゲートリセス構造を採用したことで、ほぼノーマリオフの動作が得られた。図 $_2$ (b)に示すように、破壊電圧を調べたところ、 $_2$ 0

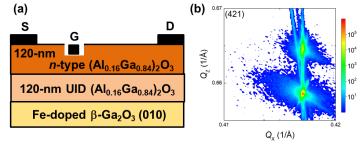


Fig. 1: (a) Schematic structure Sn-doped β -(Al_{0.16}Ga_{0.84})₂O₃ (010) channel MESFET. (b) Symmetric on-axis (421) reciprocal space maps for (AlGa)₂O₃ layer on Ga₂O₃ substrate.

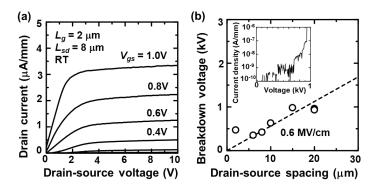


Fig. 2: (a) DC output characteristics of lightly Sn-doped (Al_{0.16}Ga $_{0.84}$)₂O₃ MESFET with gate length of 2 μ m for V_{gs} from 0 to +1 V. (b) Three-terminal off-stat breakdown voltage as a function of gate-to-drain spacing

μm のゲート-ドレイン電極幅において、940 V の高い耐圧が得られた。

本研究は、科研費(16H06424 および 16K13673)の援助を受けて行われた。

H. Okumura et. al., Jpn. J. Appl. Phys. 58, SBBD12 (2019).