Impact of ALD high-k materials on SiGe MOS interface properties with TiN gate ⁰ T.-E. Lee, K. Toprasertpong, M. Takenaka and S. Takagi The University of Tokyo, Faculty of Engineering

E-mail: leete@mosfet.t.u-tokyo.ac.jp

1. Introduction

SiGe MOSFETs have stirred much attention as pchannel devices, because of the high hole mobility and the appropriate bandgap. However, the undesired formation of GeO_x in the interfacial layers (IL) can be regarded as an origin of the MOS interface degradation [1]. We have recently reported the improvement of SiGe MOS interface properties by employing TiN/ALD Y₂O₃ gate stacks with PMA at 450°C [2], whereas the effects of different high-k films on the SiGe MOS interface properties have not been fully studied yet. In this study, the impacts of ALD high-k materials, Y₂O₃, Al₂O₃, HfO₂ and ZrO₂, on the SiGe MOS interface properties including D_{it} are systematically examined with changing PMA temperature.

2. Experiment

7-nm-thick non-doped Si_{0.78}Ge_{0.22}/p-type Si(100) wafers were cleaned by de-ionized water, acetone and diluted HF. Subsequently, 7-nm-thick Y₂O₃, Al₂O₃, HfO₂ and ZrO₂ were deposited at 300 °C by ALD using (CpMe)₃Y, TMA, TDMAH, TDMAZ as the precursors, respectively, and H₂O as the oxidant. All the samples were followed by gate electrode formation using metal sputtering of 50-nm-thick TiN and thermal evaporation of 100-nm-thick Al. TiN was patterned by APM (NH₄OH:H₂O₂:H₂O=1:2:5) at 70 °C and Al was patterned by NMD-3 at room temperature. Then, the 100-nm-thick Al back contact was formed by thermal evaporation. PMA was finally performed for 1 min in N₂ ambient for all the TiN/ALD high-k/SiGe stacks at 300, 350, 400 to 450 °C.

3. Results and Discussion

Fig. 1(a) shows the minimum values of interface state density (Dit,min) as a function of PMA temperature. The lowest Dit,min is obtained by TiN/Y_2O_3 stacks with PMA at 450°C between all the TiN/high-k stacks under optimized PMA temperature. Dit,min of all the high-k stacks reduces after PMA at 300°C. However, D_{it,min} further reduces with increasing PMA temperature until 450°C only for the Y₂O₃ stacks, whereas D_{it,min} increases for the Al₂O₃, HfO_2 and ZrO_2 stacks. Fig. 1(b) shows the areal slow trap density (ΔN_{st}) as a function of PMA temperature. It is found that the higher PMA temperature can reduce ΔN_{fix} for all the high-k stacks.

Fig. 2(a) and (b) show D_{it} as a function of the total amounts of Ge sub-oxides and the amounts of GeO₂, evaluated by Ge 3d XPS spectra, in IL of the Y₂O₃, Al₂O₃, HfO₂ and ZrO₂ stacks after PMA at 300 and 450°C, respectively. It is found in the results after PMA at 300°C that less amounts of Ge sub-oxides have tendency to provide lower Dit in all the high-k stacks, whereas the amounts of GeO₂ do not have correlated with D_{it}. This fact can be explained by considering that Ge sub-oxides can include more amounts of distorted Ge-O bonds, which can generate D_{it} because of the weaker bonding energy than GeO₂ [3]. After PMA at 450°C, the tendency that less amounts of Ge sub-oxides still leads to lower Dit is still maintained for all the high-k stacks. On the other hand, further significant reduction of D_{it} is observed in the Y₂O₃ stacks after PMA at 450°C. This reduction cannot be explained by the amount of Ge sub-oxides, because D_{it} in the Y₂O₃ stacks is lower by one of the magnitude than that in the Al₂O₃ stacks with the same amount of Ge sub-oxides. Thus, this significant reduction in D_{it} can be attributed to any mechanism inherent to Y₂O₃ such as incorporation of Y atoms into networks of Ge oxides and termination of dangling bonds [3].

4. Conclusions

We have shown that TiN/Y₂O₃/Si_{0.78}Ge_{0.22} gate stacks with PMA at 450°C provide the best MOS interfacial properties. The physical origins of Dit reduction in the TiN/Y2O3 stacks with PMA are attributable to the reduction in amounts of distorted Ge-O bonds in Ge sub-oxides by scavenging and healing effects during PMA at 300°C, and termination of Ge dangling bonds by incorporation of Y atoms into GeO_x during PMA at 450°C.

Acknowledgements

This work was supported by JST CREST Grant Number JPMJCR1332, Japan and a Grant-in-Aid for Scientific Research (17H06148) from MEXT. References [1] C.-H. Lee et al., VLSI Symp., 2016, pp. 36. [2] T.-E. Lee et al., VLSI Symp., 2019, T101. [3] L. Zhang et al., ACS Appl. Mater. Interfaces, 2016, 8, pp. 19110.

Fig.1: (a) $D_{it,min}$ and (b) ΔN_{st} as a function of PMA temperature.

Fig.2: D_{it} as a function of the normalized total amounts of Ge sub-oxides and GeO₂ after PMA at (a) 300 and (b) 450 °C.