The floating-gate memory characteristics utilizing N-doped LaB₆ metal thin film and LaB_xN_y insulating layer

Tokyo Institute of Technology, [°]Kyung Eun Park, Hideki Kamata, and Shun-ichiro Ohmi

E-mail: park.k.ab@m.titech.ac.jp, ohmi@ee.e.titech.ac.jp

1. Introduction

The nitrogen-doped (N-doped) LaB₆ has low resistivity, low work function, and chemical stability [1]. We have reported the thin film quality of N-doped LaB₆ electrode (metal : M) and formation of LaB_xN_y (insulator: I) thin film by Ar/N₂ plasma sputtering [2,3].

In this study, the MIMIS structure diode was investigated to floating-gate memory.

2. Experimental procedure

The p-Si(100) substrate was cleaned by SPM and DHF. Next, the N-doped LaB₆ metal layer and LaB_xN_y insulating layer as MIMIS structure with a thickness of 30/10/20/5 nm, respectively, were in-situ deposited on p-Si(100) by RF sputtering at room temperature (RT). The N-doped LaB_6 target was used (N: 0.4%) in this study. The sputtering conditions were 7 and 50 W, Ar/N_2 : 10/5 and 10/0 sccm, 0.42 and 0.35 Pa, for LaB_xN_y and N-doped respectively. The post metallization LaB_6 , annealing (PMA) process was carried out at 400° C/1 min in N₂ (1 SLM) ambient followed by the patterning with diluted nitric acid. The pattern size was $30 \times 30 \ \mu m^2$ Finally, the back Al electrode was formed. The electrical characteristics of the MIMIS evaluated C-V diodes were by measurement at RT.

3. Results and Discussion

The C-V characteristics for MIMIS diodes were shown in Fig.1. The program and erase (P/E) voltage/time were changed from ± 1 V/1 s to ± 5 V/1 s. Then, the flat-band voltage (V_{FB}) was extracted from the C-V curves that the gate voltage was applied from the negative to the positive direction. As shown in Fig. 1(a), the hysteresis was decreased from 260 mV to 170 mV by increasing programming voltage. On the other hand, the V_{FB} was shifted from -0.60 V to -0.18 V. In case of the erase condition, the hysteresis was increased from 260 mV to 550 mV. Furthermore, V_{FB} was shifted from -0.6 V to -1.2 V.

4. Conclusions

We investigated the MIMIS diode utilizing LaB_xN_y insulator and N-doped LaB_6 metal layer. The MIMIS diodes showed clear P/E state. Which would be improved by considering the design of MIMIS structure fabrication process.

Acknowledgement

This research was partially supported by NIMS Joint Research Hub Program.

References

- K. Nagaoka, *et al.*, Vacuum, vol.170, 108973 (2019).
- [2] K. E. Park, *et al.*, IEICE Trans. Electron., **103**, 6, pp.293-298 (2020).
- [3] K. E. Park, *et al.*, 78th Device Research Conference, pp.140-141 (2020).

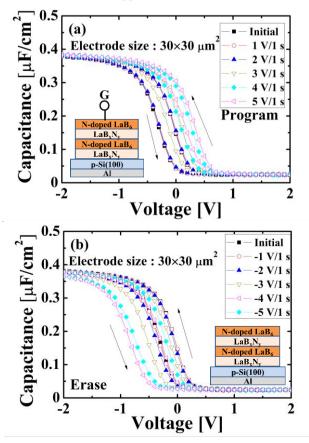


Figure 1. C-V characteristics of MIMIS diodes. Program (a) and erase (b) characteristics. The P/E pulses were ± 1 V- ± 5 V for 1s.