Tunable Optical Properties of Copper Phthalocyanine Molecules Adsorbed on MoS₂ Based Field Effect Transistor

Md Iftekharul Alam¹, Tsuyoshi Takaoka², Hiroki Waizumi¹, M. Shamim Al Mamun¹, Yudai Tanaka¹, Tadahiro Komeda³

Dept. of Chemistry, Tohoku University¹, IMRAM, Tohoku University²

In comparison with other transition metal dichalcogenides (TMDs) both single and multilayer molybdenum disulfide (MoS_2) have achieved much popularity for its outstanding electronic and optoelectronic applications. MoS_2 also plays significant role by stacking with organic materials like copper phthalocyanine (CuPc), to use in low power electronics and optoelectronics such as tunneling transistors, photodetectors.

 MoS_2 flakes were transferred to 300 nm SiO_2 covered heavily doped silicon substrates using scotch tape method and FET device was fabricated by electron beam lithography. The measurement of electrical properties and CuPc adsorption were performed in a UHV chamber at an operating vacuum pressure ($\sim 10^{-6}$ Pa). Optical properties were observed by injecting light from a monochromatic light source.

The role of CuPc molecules adsorbed on MoS₂ FET under light illumination has been focused on this work. Figure 1 indicates the wavelength(nm)-I_{DS} intensity(A) of pristine and CuPc-MoS₂ FET surface where a new peak is to be found at 720 nm wavelength after light irradiation on CuPc-MoS₂ surface that is absent in pristine MoS₂ FET surface.

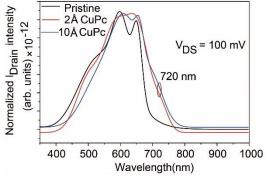


Figure 1: Wavelength-I_{DS} intensity curve of CuPc adsorption on MoS₂ FET under light

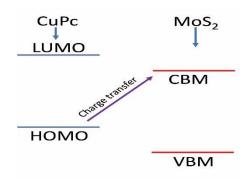


Figure 2: Possible origin of charge transfer transition from the CuPc-MoS₂ interface

The appearance of a new peak suggests that a charge transfer transition happens from the CuPc highest occupied molecular orbital (HOMO) to the MoS_2 conduction band minimum (CBM) that has been demonstrated in Fig. 2.