## TMIn と金属 Ga のトランスメタル化による窒素中と水素中の TMGa 生成の質量分析 Time of flight mass spectroscopy analysis of transmetalation between trimethylindium and gallium in N<sub>2</sub> and H<sub>2</sub>

名大院工<sup>1</sup>,名大未来材料・システム研究所<sup>2</sup>,物材機構<sup>3</sup>,名大赤崎記念研究センター<sup>4</sup>,名大 VBL<sup>5</sup>

<sup>O</sup>(M2) 呉 東臨<sup>1</sup>, 叶 正<sup>2</sup>, 新田 州吾<sup>2</sup>, 本田 善央<sup>2</sup>, Markus Pristovsek<sup>2</sup>, 天野 浩<sup>2,3,4,5</sup>

Dept. of Elec. Nagoya Univ.<sup>1</sup>, Nagoya Univ. IMaSS<sup>2</sup>, NIMS<sup>3</sup>, Nagoya Univ. ARC<sup>4</sup>, Nagoya Univ. VBL<sup>5</sup> °(M2) Donglin Wu<sup>1</sup>, Zheng Ye<sup>2</sup>, Shugo Nitta<sup>2</sup>, Yoshio Honda<sup>2</sup>, Markus Pristovsek<sup>2</sup>,

Hiroshi Amano<sup>2, 3, 4, 5</sup>

E-mail: wu.donglin@f.mbox.nagoya-u.ac.jp

The gallium (Ga) contamination during AlInN growth is a well-known problem [1]. Unintentional Ga incorporation will cause lattice mismatched to GaN, lower two-dimensional electron density, and lower bandgap. The Ga supposedly originates from a transmetalation reaction between the methyl groups of trimethylindium (TMIn,  $(CH_3)_3$ In) to metallic Ga deposited on the showerhead. The transmetalation mobilizes the Ga by forming Ga(CH<sub>3</sub>)x which can then reach the growth surface. We have shown direct proof about the transmetalation in [2]. In this study, we found the same reaction and the same temperature dependence in H<sub>2</sub> ambient, but with a lower (CH<sub>3</sub>)<sub>2</sub>Ga (DMGa) signal.

The strongest metal-organic (MO) related signals were the di-methyls, i.e.  $(CH_3)_2In$  (DMIn) and DMGa, probably due to heating and ionization [3]. When TMIn is flowing, the DMGa signal gets strongest at a reactor temperature of 400°C in N<sub>2</sub> and 300°C in H<sub>2</sub>. It should be emphasized again that no  $(CH_3)_3Ga$  (TMGa) was introduced in the reactor. Therefore, the DMGa signals must result from transmetalation of the metallic Ga with TMIn. Even more, DMGa intensity increased when heating up to 400°C in N<sub>2</sub> and 300°C in H<sub>2</sub> and then decreasing simultaneously with DMIn. The decomposition temperature of TMGa is higher than 400°C [3]. However, TMIn is decomposing at 400°C in N<sub>2</sub> and 300°C in H<sub>2</sub>, which means that no longer TMIn and DMIn arrives at the Ga boat for temperatures above TMIn decomposing temperature. The decrease of DMGa is a result of TMIn decomposition.

Acknowledgement This work was supported by MEXT "Research and development of next-generation semiconductor to realize energy-saving society" Program Grant Number JPJ005357.

References [1] M. Mrad et al., J. Cryst. Growth, 507(2019)139. [2] D. Wu et al., JSAP, 13-302-9(2020). [3] Z. Ye et al., Jpn. J. Appl. Phys.,

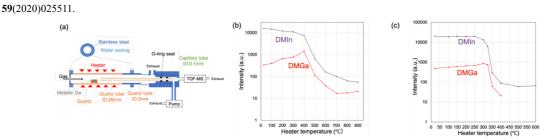



Fig.1 (a) Gas monitoring system[3] (b). DMGa and DMIn intensity change in  $N_2$  (c) DMGa and DMIn intensity change in  $H_2$