Time-resolved ARPES of excitons in a 2D semiconductor

Julien Madéo¹, Michael K. L. Man¹, Chakradhar Sahoo¹, Marshall Campbell², Vivek Pareek¹, E Laine Wong¹, Abdullah Al Mahboob¹, Nicholas S. Chan¹, Arka Karmakar¹, Bala Murali Krishna Mariserla^{1,3}, Xiaoqin Li², Tony F. Heinz^{4,5}, Ting Cao^{4,6} and Keshav M. Dani¹

¹ Femtosecond Spectroscopy Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Okinawa, Japan 904-0495, ² Physics Department, Center for Complex Quantum System, the University of Texas at Austin, Austin, TX, U.S.A, 78712, ³ Department of Physics, Indian Institute of Technology, Jodhpur, Rajasthan, India-342037, ⁴ Department of Applied Physics, Stanford University, 348 Via Pueblo Mall, Stanford, California 94305, U.S.A., ⁵ SLAC National Accelerator Laboratory, Menlo Park, California 94720, USA, ⁶ Department of Materials Sciences and Engineering, University of Washington, Seattle, WA, U.S.A, 98195

E-mail: kmdani@oist.jp

The unique optical properties of two-dimensional semiconductors, such as monolayer transition metal dichalcogenides, have provided deep insights into fundamental materials research and emerging nanotechnologies [1,2]. The strong Coulomb interactions and distinct structural symmetries in these materials give rise to a rich variety of photoexcited states, including bright and dark excitonic complexes that are tightly bound and valley-spin polarized [3]. However, directly accessing both bright and momentum-forbidden dark excitons and fully capturing their relaxation processes, occurring rapidly along both the energy and momentum axes, has not been possible with conventional experimental probes. In particular, a direct determination of the quasi-equilibrium exciton distribution over the entire Brillouin zone after the initial cooling is essential for future research and optoelectronic applications of two-dimensional materials. Here, by performing time- and momentum-resolved photoemission spectroscopy based on table-top MHz XUV source (21.7eV) on a micron-scale monolayer flake of WSe₂, we directly observe the exciton distribution at the K- and Σ -valleys and measure their dynamics and relaxation pathways under different excitation conditions across the Brillouin zone [4].

In contrast to the typical behavior in bulk semiconductors, we find that bound excitons form within a few hundred femtoseconds. These excitons are characterized by multiple near-degenerate species involving holes in the K-valley and electrons in both the K- and Σ -valleys of the Brillouin zone, with relaxation pathways dictated by the initial excitation conditions. For resonant excitation, we see the rapid formation of K-valley excitons, followed by scattering of the exciton population to the Σ -valley in 300fs. In contrast, for above-gap excitation at 2.5eV, we observe excitons forming within 500 fs, with electrons in the K- and Σ -valley, but with a larger initial density at Σ , and net scattering from the Σ - to K-valley. Our measurements provide the first global view of the ultrafast optical response of 2D semiconductors and demonstrate the impact of studying excited-state dynamics over the full Brillouin zone in condensed matter systems.

References

- [1] A. Pulickel et al., Physics Today 69, 9, 38 (2016)
- [2] Q. H. Wang et al., Nat. Nanotechnol. 7, 699 (2012)
- [3] G. Wang et al., Rev. Mod. Phys. 90, 021001 (2018)
- [4] J. Madéo et al., In review