Ca₃B(Ga,Al)₃Si₂O₁₄(B = Nb, Ta)圧電単結晶における結晶構造の AI 置換量依存性

Al Concentration Dependence of Crystal Structure on Ca₃B(Ga,Al)₃Si₂O₁₄

(*B* = Nb, Ta) Piezoelectric Single Crystals

東北大金研¹、東北大 NICHe²、C&A³

^O横田 有為¹、大橋 雄二²、吉野 将生¹、山路 晃広¹、花田 貴¹、豊田 智史²、佐藤 浩樹²、 黒澤 俊介²、鎌田 圭^{2,3}、吉川 彰^{1,2,3}

IMR, Tohoku Univ.¹, NICHe, Tohoku Univ.², C&A³

°Yuui Yokota¹, Yuji Ohashi², Masao Yoshino¹, Akihiro Yamaji¹, Takashi Hanada¹, Satoshi

Toyoda², Hiroki Sato², Shunsuke Kurosawa², Kei Kamada^{2,3}, Akira Yoshikawa^{1,2,3}

E-mail: yokota@imr.tohoku.ac.jp

[背景]

オーダー型ランガサイト系圧電結晶材料の Ca₃NbGa₃Si₂O₁₄ (CTGS)および Ca₃TaGa₃Si₂O₁₄ (CTGS)は、高温における安定した圧電特性や室温付近の高い周波数温度安定性から様々な応用が 期待されている。我々は Ga サイトへの Al 置換を行った Ca₃Nb(Ga_{1-x}Al_x)₃Si₂O₁₄ (CNGAS)および Ca₃Ta(Ga_{1-x}Al_x)₃Si₂O₁₄ (CTGAS)単結晶を作製し、材料定数や圧電特性の Al 置換量依存性を明らか にしてきた[1,2]。さらに、2018年の春季講演会では CTGAS の結晶構造に着目し、様々な Al 置換 量を有する CTGAS 単結晶において単結晶構造解析を行った[3]。その結果、Al 置換による結晶構 造の変化は、各カチオンサイトで大きく異なっていることが明らかとなり、その影響が Al 置換の 増加による異方性の増加や誘電率の変化に起因していることが示唆された[4]。本研究ではCNGAS 単結晶に関しても同様に単結晶構造解析を行い、結晶構造の Al 置換量依存性を調べることで、 CTGAS の結果と比較しながら、結晶構造と圧電特性の相関を明らかにすることを目的とした。 [実験方法]

チョクラルスキー法を用いて 1 インチ径の Ca₃Nb(Ga_{1-x}Al_x)₃Si₂O₁₄ (*x* = 0, 0.25, 0.5)単結晶を育成 した。得られた単結晶の相分析は、粉末 X 線回折測定(Bruker Discovery D8)によって行い、得られ

た粉末 XRD パターンから格子定数を算出した。さらに、イメージ ングプレートを用いた単結晶の X 線回折測定(Rigaku R-AXIS RAPID II)によって単結晶構造解析を行った。

[結果・考察]

CNGAS単結晶の単結晶構造解析の結果、SiO4四面体においては、 Al置換量にかかわらずSi-O(1)とSi-O(2)の結合長の変化は見られな かった(Fig.1)。一方、Siの位置がz方向に変位したことで、Al置換 量の増加とともにO(2)-Si-O(2)およびSi-O(2)-Gaの結合角が増加し た。さらに、NbO6八面体ではNb-O(3)結合長の変化は見られなかっ たが、(Ga,Al)O4四面体ではAl置換量の増加に伴う(Ga,Al)-O(2)およ び(Ga,Al)-O(3)結合長の大幅な減少が確認され(Fig.2)、CNGAS単結 晶においてもAl置換効果は各カチオンサイトで異なっていること が明らかとなった。当日はより詳細な単結晶構造解析の結果と圧電 特性との相関に関して報告する。

[1] Y. Yokota, A. Yoshikawa, et al., J. Cryst. Growth 468 (2017) 321.

[2] Y. Ohashi, Y. Yokota, A. Yoshikawa, et al., *IEEE Trans. Ultrason. Ferroelectr. Freq. Control* 63 (2016) 1575

[3] 横田他、第65回応用物理学会春季学術講演会 17a-B301-2 (2018)

[4] Y. Yokota, A. Yoshikawa, et al, J. Solid State Chem. 277 (2019) 195

Fig. 1 SiO₄ tetrahedron in Ca₃Nb(Ga_{0.5}Al_{0.5})₃Si₂O₁₄ (x = 0.5) single crystal.

Fig.2 $(Ga,Al)O_4$ tetrahedroninCa_3Nb(Ga_{0.5}Al_{0.5})_3Si_2O_{14}(x = 0.5) single crystal.