Electromechanical properties of 2-degree-of-freedom piezoelectric vibration energy harvester for impulsive force

Osaka Pref. Univ.¹, Univ. of Hyogo², ORIST³,

°(M1) S. Aphayvong¹, T. Yoshimura¹, K. Kanda², S. Murakami³ and N. Fujimura¹ E-mail: tyoshi@pe.osakafu-u.ac.jp

[Introduction] In order to expand the application of piezoelectric vibration energy harvester (pVEH), it is important to effectively harvest vibration energy in ambient vibrations, which has random, time-varying and low-frequency properties. Instead of broadening the bandwidth of the harvester, which the decreasing of mechanical Q factor leads to lower output power, we focus on harvesting energy from the impulsive force. In our previous work, electromechanical properties of conventional pVEHs with one-degree-of-freedom system (1DOF) were characterized under impulsive force.¹ Moreover, the significant improvement of output energy from the impulsive force was observed experimentally by using dynamic magnifier under the pVEH, which is known as a 2DOF system.² In this work, the electromechanical response of 2DOF-pVEHs under the impulsive force is discussed by theoretical calculation.

[Simulation and **Results**] The theoretical calculation based on the lumped parameter model of pVEH with 2DOF was used.³ The parameters of pVEH and dynamics magnifier are shown in Table I. Figure. 1 shows the dependences of the output energy on Q factor of the dynamic magnifier (Q_{dm}) and impulse duration. When the resonance frequency of dynamic magnifier f_{dm} is the same as that of pVEH (Fig. 1(a)), the high output energy is obtained because of the amplification by the resonance of the dynamic magnifier. When f_{dm} is 400 Hz (Fig. 1(b)), the output energy decreases drastically. In the both cases, broad dependence on Q_{dm} was observed, which is different in the case of sinusoidal vibration. The further analysis of electromechanical of 2DOF-pVEH and the energy conversion efficiency will be presented.

[Acknowledgment] This research was supported by JST CREST. (JPMJCR16Q4)

- [References]
- [1] S. Aphayvong, Jpn. J. Appl. Phys., Submitted (2020).
- [2] S. Aphayvong, the 67th JSAP Fall Meeting, 14a-D419.
- [3] M Aramaki et al., Appl. Phys. Lett. 144, 133902 (2019).

Table I. Parameters of pvEHs						
		m (mg)	$f(\mathrm{Hz})$		Q	$K^{2}(\%)$
p V	VEH	4.19	236		400	0.7
Ι	DM	370	a.236	b.400	50-1000	
	1000		_		_	7.0
	810				a	7.0
	620	-				2.5
	430	-				3.5
	240	_				(lu)
	50					0 0 0.1 Dutput energy (n])
Q_{dm}			1	1	_	enel
9	1000				b.	0.1 ont
	810	-				Dut
	620	-				-
	430	-				1
	240					
						0
	50	2.0 3.0	0 4.0	5.0	6.0	0
Impulse duration (ms)						
impulse duration (ms)						

Table I Parameters of pVEHs

Fig.1: The dependences of output energy on dynamic magnifier's Q factor and duration of impulsive force.

a. $f_0 = f_{dm} = 236 \text{ Hz}$; b. $f_0 = 236 \text{ Hz}$, $f_{dm} = 400 \text{ Hz}$.