MeV-SIMS における二次イオン軌道シミュレーション Simulation of secondary ion trajectory in MeV-SIMS ^の瀬木利夫¹,松尾二郎¹ Graduate School of Engineering, Kyoto Univ.¹, [°]Toshio Seki¹ and Jiro Matsuo¹ E-mail: seki@sakura.nucleng.kyoto-u.ac.jp

二次イオン質量分析法(SIMS)は感度の高さや原理上すべての質量を分析可能であるという特徴 をもつが、通常の SIMS は keV 領域のエネルギーを持つ一次イオンを用いることから高真空下で の測定が必要不可欠であり、高真空下で不安定な揮発性液体試料や水を含んだ状態の生体試料を 評価することが困難であった。そのため、MeV 領域のエネルギーを持つ高速重イオンを用いた MeV-SIMS の研究開発を行い、一次イオン入射ノズルや二次イオン引出ノズルにオリフィス径が 100µm 程度の精密ノズルを使用することにより、試料室に大気圧まで He 導入した状態でも分析 室やビームラインの真空度の悪化を抑制し、大気圧下における SIMS 測定が可能な MeV-SIMS 装 置を構築した[1]。これにより揮発性有機液体試料や水溶液の SIMS 測定に成功している。

大気圧 MeV-SIMS では入射ノズルや引出ノズルをサンプル表面に 1mm 以下まで近づけ、各ノズ ル及びサンプルに電圧印加して形成した電界及びノズルを経由して質量分析器側へ引き込まれる He ガスの流れによりサンプル表面で発生した二次イオンを質量分析器側へ引き出している。しか し、大気圧下において二次イオンがどのような軌道を描いて引き出されているのか詳細は不明で あった。今回は、SIMION 8.1(Scientific Instrument Services, Inc.製)を用い、ノズルへの He ガスの流 れを考慮した二次イオン軌道シミュレーションを行い実験結果との比較を行ったので報告する。 入射ノズルはオリフィス径 100 µm のファインノズル、引出ノズルはオリフィス径 140 µm、長さ 8mm のパイプノズルを想定し、あらかじめ OpenForam Ver. 5.0 を用いた流体シミュレーションに より各ノズルのオリフィス周辺のガス流速を計算した。SIMION では各ノズル及びサンプルを3

次元でモデリングし、入射ノズル、引出 ノズル、サンプルの各電位を340 V,125 V, 350V に設定して電界を構築し、系全体 を He 大気圧下とした上で先に計算した 各ノズルのオリフィス周辺のガス流速 を近似的に適用した。図1にDSPCサン プルのMeV-SIMS測定において入射ノズ ルとサンプル間距離(L_{in})を変化させた ときのDSPC二次イオン強度の変化と上 記SIMION シミュレーションによって得 られた強度変化の比較を示す。実験と計 算結果は良い一致を示しており、二次イ オンの軌道シミュレーションが実験を よく再現できていることが分かる。

[1] M. Kusakari *et.al.*, J. Vac. Sci. Technol. B 34, 03H111 (2016).

Fig. 1 Changes in DSPC molecular peak intensity with varying distance (L_{in}) between the incident nozzle and the sample surface.