水素化 a-Si への FLA によるテクスチャ化ガラス上への poly-Si 薄膜形成

Formation of poly-Si films on textured glass substrates by the flash lamp annealing

of hydrogenated amorphous Si films

北陸先端大 Wang Zheng, Huynh Thi Cam Tu, 大平 圭介

JAIST, Zheng Wang, Huynh Thi Cam Tu, Keisuke Ohdaira

Email: s1910040@jaist.ac.jp

<u>はじめに</u>:低コスト化とSi原料の高い利用効率の観点から、薄膜結晶Si太陽電池が注目されている。これまで我々は、ガラス基板/Cr密着層上の水素化非晶質Si(a-Si:H)膜に、フラッシュランプアニール(FLA)を行うことで、膜剥離無くa-Siを結晶化できることを明らかにした^{III}。しかし、FLA時にCrがSi膜中へ混入することによる、太陽電池特性の低下が懸念されている。セル構造として裏面電極型構造を採用すれば、ガラス/Si間に金属層を使う必要が無くなり、高い変換効率が期待される。そこで今回、テクスチャ構造を形成したガラス基板上に堆積した膜厚3.0 µmの前駆体a-Si:H 膜にFLAを行うことで、膜剥離無く poly-Si 膜を得る検討を行ったので報告をする。

<u>実験方法</u>: 基板には、19.8×19.8×0.7 mm³の無アルカリガラス (Corning Eagle)を使用した。CF₄ガスを用いた反応性エッチング (RIE)を、圧力 2.6 Pa で 1–3 h 行い、ガラス表面に凹凸を形成し た。エタノールによる超音波洗浄を行った後、触媒化学気相堆 積(Cat-CVD)法を用いて、基板温度 350 °C で、 膜厚 70 nm の SiN_xを形成し、基板温度 450 °C で、 膜厚 3.0 μ m の a-Si を堆積 した。その後、Ar 雰囲気、プレヒート温度 450 °C で、照射強 度 15.5–20.0 J/cm²、パルス時間 5–7 ms の条件で、各試料へ 1 度だけ FLA を行った。FLA 後の試料は、ラマン分光法で結晶 化の有無の確認を行った。

<u>結果</u>: Fig. 1 に、RIE を 2.5 h および 2 h 行ったガラス基板上に 堆積した a-Si 膜に、照射強度 18.9 J/cm² で FLA を行った後の試 料の表面写真を示す。RIE 2 h の試料では、FLA 照射中に膜が 剥離してしまったが、RIE 2.5 h の試料では、ほぼ全面にわたり 膜剥離が抑止できていることが分かる。この試料のラマンスペ クトルを Fig. 2 に示す。520 cm⁻¹ 付近に結晶 Si (c-Si)のピーク が確認できることから、FLA により結晶化が行われたことが分

Fig.1 Surface of poly-Si films formed by FLA of Cat-CVD a-Si:H films on glass substrates textured by RIE for (a) 2.5 h and (b)2 h.

Fig. 2 Raman spectrum of a Si film on a textured glass substrate (RIE 2.5h) after FLA. The spectrum of a c-Si wafer is also shown for comparison.

かる。また、このピークの半値全幅が約8 cm⁻¹であることから、形成された poly-Si 膜は、微小結 晶粒で形成されていることが示唆される^[2]。Si 膜の剥離が抑止できた理由として、アンカー効果 により、ガラス基板とSi 膜の密着性が高まったためと考えられる。

<u>参考文献</u>: [1] K. Ohdaira *et al.*, Jpn. J. Appl. Phys. **46**, 7603 (2007), [2] C. Smit *et al.*, J. Appl. Phys. **94**, 3582 (2003).