Etching effect of carbon dioxide on carbon nanotube growth at high temperature

阪大院工¹, 日本化薬(株)² ^O王 梦玥¹, 中村 圭介¹, 有福 達治², 清柳 典子², 池田 征明², 小林 慶裕¹

Osaka Univ.¹, Nippon Kayaku², ^oM. Wang¹, K. Nakamura¹, M. Arifuku²,

N. Kiyoyanagi², M. Ikeda², Y. Kobayashi¹

E-mail: wang.my@ap.eng.osaka-u.ac.jp

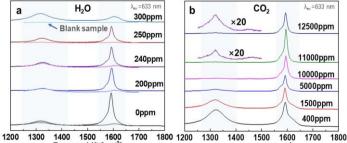
[Introduction] Formed simultaneously with CNTs, amorphous carbon (a-C) adsorbs on the surface of catalysts or growth seeds and blocks the active sites. To remove such by-product, relied on oxidation reaction, kinds of etchants have been employed in the growth procedure. As part of the commoner used etchants, H_2O and CO_2 have been proved to perform some desired etching effects [1, 2]. In the reports we have presented before, when the growth temperature raised up to 1000°C, part of a-C might not be removed, especially when using ethylene as the carbon source [3]. This result reminded us the importance of etchant participated in growth system. In this project, we tried to figure out the etching ability of CO_2 in two-stage growth and made a comparison with H_2O . It has been found that, different with the etching capacity of H₂O performed at 1000°C, CO₂ prefers gentler etching effect with fewer CNTs damages even there got excess injection amount [4], which presented that the CO₂ could be a more efficient and stable etchant in CNTs' growth at high temperature.

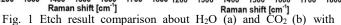
[Experiment] Carbon nano-onion (CNO) was formed by heating nanodiamond at 1000°C in Ar for 1 hour and works as the growth seeds. In the two-stage growth, the mixture of the growth gas is 4 sccm C_2H_4/Ar carried by 16 sccm H₂/Ar at 900°C for cap formation and then turn to second stage growth, 1000°C, 30 min, while fraction of the carbon source was kept low (1 sccm C_2H_4/Ar carried by 19 sccm H_2/Ar). In one-stage growth at 1000°C, kept 2 sccm C₂H₄/Ar carried by 18 sccm H₂/Ar as the flow rate, the same amount of CO₂ has been injected and the injection time was adjusted from 0 min, 2 min 5 min, 7 min since the experiment starts. The growth result without CO_2 has been collected as the control. The quality and yield of the grown CNTs were characterized by

Raman spectra using 633 nm excitation.

[Result and discussion] From Fig. 1, the Raman spectra shows the etching result comparison with various fraction of etchants at the second stage growth (1000°C, 30min). As Fig. 1a presents, the D band intensity didn't tend to show a distinct decrease even through there got excessive H₂O (250ppm and 300ppm) which has already prevented the a-C deposition on the blank sample surface and began to decrease the intensity of G band. This kind of excessive control of etching effect at high temperature limited the formation yield

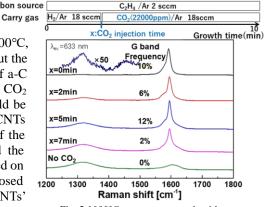
of high quality CNTs. On the other hand, CO₂, played a more stable etching effect which mainly focused on a-C

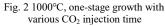

oxidization without bringing too much defects at 1000°C, demonstrated by Fig. 1b. Combining with the further study about the influence of injection time at 1000°C (Fig 2), the deposition of a-C should be very rapid and weaken the etching effect even if the CO₂ injection time delayed to 2 min so that the injection time should be start from the beginning. Also, the negative influence to CNTs crystallization could be ignored due to the D band intensity of the sample grown under CO₂ injection in the whole period and the formation of cap structure did not been prevented too much based on the G band observation frequency. In contrast to $\mathrm{H}_{2}\mathrm{O},$ it is supposed that CO₂ exhibits more suitable etching effect to enhance CNTs' growth at high temperature.


[1] A.G. Nasibulin et al., Chemical Physics Letters, 417 (2006), 179-184

- [2] Y. Liao et al., Advanced Materials Interfaces, 5 (2018), 1801209
- [3] 王梦玥他、2020 年春期応物講演会 13a-A404-9、 submitted.

[4] J. Huang et al., Nano Research, 2 (2009), 872-881


Acknowledgments This work was partly supported by JSPS Kakenhi.



different injection amount at 1000 °C in two-stage growth system

Carbon source

