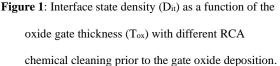
MOS 構造での酸化物ゲート厚さのばらつきと界面準位密度の関連性の考察

Consideration of relationship between the variation of Gate Oxide Thicknesses and the density of interface states for MOS structure Mickael Lozac'h¹, Sommawan Khumpuang^{1,2}, 原史朗^{1,2} ¹National Institute of Advanced Industrial Science and Technology (AIST), Device Technology Research Institute, Minimal System Group, Tsukuba, Japan

² Minimal Fab Promoting Organization, AIST, Tsukuba, Japan


E-mail: mickael.lozach@aist.go.jp

P-channel metal-oxide-semiconductor field effect transistors (p-MOSFET), also called pMOS, are fabricated by an advanced semiconductor fab: Minimal Fab [1,2]. Minimal Fab is characterized by a modern, cost-effective, fabrication concept [2]. The silicon wafers are minimized to a diameter of 12.5 mm and encapsulated in a shuttle to avoid any contamination, keeping white room condition during the full fabrication process, without the space and budget of a mega fab [2].

Here, the density of interface state (D_{it}) is monitored as a function of the oxide gate thickness (T_{ox}) to improve the yield of pMOS devices. The coupled D_{it} - T_{ox} variable can improve the reliability of pMOS characterization by underlining the interface Si-SiO₂ quality, which is associated to electrical performance by D_{it} . For this, we focused on the RCA chemical cleaning, prior to the gate oxide deposition, realized in three different Minimal Fab stations (RCA #4, #6, and #7) with

specific final RCA step HCl/H₂O₂/DIW ratio: 1/1/100 and 1/1/6. The gate oxide deposition is then performed at 1150 °C for 50 min by focused light heating. D_{it} is calculated about $10^{10} \text{ eV}^{-1} \text{ cm}^{-2}$ to $3 \times 10^{11} \text{ eV}^{-1} \text{ cm}^{-2}$ from capacitance-voltage measurement at high and quasi-static frequencies [3], and T_{ox} is estimated between 67 nm to 74.5 nm from the maximum capacitance oxide. Figure 1 underlines that D_{it} - T_{ox} can give a precise "identity" of a specific RCA process, and underline possible interface damage due to plasma etching where D_{it} about $3 \times 10^{11} \text{ eV}^{-1} \text{ cm}^{-2}$ is observed. An excellent interface quality is obtained with D_{it} < $5 \times 10^{10} \text{ eV}^{-1} \text{ cm}^{-2}$.

References: [1] S. Hara et al., J. Jpn. Soc. Precis. Eng. **77** (2011) 249-253. [2] S. Khumpuang et al., IEEE Trans. Semic. Manuf. **28** (2015) 393-398. [3] A. V. Penumatcha et al., IEEE Trans. Elec. Dev. **60** (2013) 923-926.