熱電能電界変調法による SnO₂ 薄膜トランジスタのチャネル厚さ分析

Electric Field Thermopower Modulation Analyses of

the Channel Thickness for SnO2 Thin Film Transistors

¹北大電子,²北京科技大,³北大情報^O(D)梁 豆豆^{1,2}, (D)陳 斌杰³, ジョ ヘジュン¹,太田裕道¹

¹RIES-Hokkaido U., ²USTB, ³IST-Hokkaido U. ^oDoudou Liang^{1,2}, Binjie Chen³, Hai Jun Cho¹,

Hiromichi Ohta¹

E-mail: liangdoudou1993@foxmail.com

Transparent amorphous oxide semiconductors (TAOSs) based transparent thin-film transistors (TTFTs) with high field-effect mobility (μ_{FE}) are essential devices for advanced flat panel displays. Among TAOSs, amorphous (a-) SnO2 has several advantages against current a-InGaZnO₄ (μ_{FE} is ~10 cm² V⁻¹ s^{-1[1]}) such as higher $\mu_{FE} > 100 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1[2]}$ and being indium-free. However, due to the strong gas sensing characteristics of SnO₂, the further research and application of SnO₂ TFT have been limited. Recently, we clarified the operation mechanism of a-SnO₂ TTFT by field thermopower modulation analyses^[3]. The result showed that a 1.7 \pm 0.4 nm-thick effective conducting channel formed at the interface between gate insulator and conducting channel with a 2.5-nm-thick depletion layer from the top surface in a 4.2-nm-thick bottom-gate top-contact type a-SnO₂ TTFT without any surface passivation. To further clarify the operating mechanism of a-SnO₂ TTFT, we measured the electric field modulated thermopower of the a-SnO₂ TTFTs with different thicknesses.

The resultant a-SnO₂ TTFTs showed a decreased I_{ON}/I_{OFF} as increased the thickness of the SnO₂ conducting channel (FIG. a). The 4.2 nm-thick SnO₂ TTFT^[3] shows the best I_{ON}/I_{OFF} performance. All the a-SnO₂ TTFTs showed an almost linear relationship in the S-log n_s plot (**FIG. b**), similar to that of S-log n_{3D} , indicating that the E-k relation at the bottom of the conduction band is parabolically shaped and the t_{eff} can be extracted as n_s/n_{3D} . The $t_{eff} \equiv n_s/n_{3D}$ of the conducting a-SnO₂ channel increased with the thickness of the SnO₂ conducting channel (FIG. c). The 4.2 nm-thick SnO₂ TTFT^[3] shows the smallest $t_{\rm eff}$ with the best $I_{\rm ON}/I_{\rm OFF}$ performance. From the thickness of the a-SnO₂ film and the $t_{\rm eff}$, the carrier depletion depth at the top surface was concluded to be around 3-4 nm of the a-SnO2 film, which shows a similar depletion length as reported data^[4]. The present results may provide the fundamental design concept of a-SnO₂ TTFT device.

[1] K. Nomura et al., Nature, 432, 488 (2004).

[2] C. W. Shin et al., Sci. Rep. 6, 19023 (2016).

[3] D. Liang et al., Appl. Phys. Lett. 116, 143503 (2020).

[4] N. Yamazoe, Sensor Actuat. B-Chem. 5, 7 (1991).

FIG. Electric field thermopower modulation analyses of the bottom-gate top-contact a-SnO₂ TTFT. (a) Transfer characteristic (I_d-V_g) curve at $V_d = +0.1$ V. (b) Change in *S* as a function of the sheet carrier concentration (n_s) . (c) The effective thickness (t_{eff}) , which is defined as n_s/n_{3D} , as a function of V_g .