Air 及び N2雰囲気のバイアスストレスによるアモルファス Carbon-doped In₂O₃TFT のトランジスタ特性 Characteristics of amorphous carbon-doped In₂O₃ TFT under bias stress in air and N₂ 明治大学¹,物質•材料研究機構 WPI-MANA²,学振 DC³,明治大学 MREL⁴ [°]小林 陸^{1,2}, 生田目 俊秀², 女屋 崇^{1,2,3}, 大井 暁彦², 池田 直樹², 長田 貴弘², 塚越 一仁², 小椋 厚志^{1,4} Meiji Univ.¹, WPI-MANA NIMS², JSPS Research Fellow DC³, MREL⁴

^oR. Kobayashi^{1, 2}, T. Nabatame², T. Onaya^{1, 2, 3}, A. Ohi²,

N. Ikeda², T. Nagata², K. Tsukagoshi², and A. Ogura^{1,4}

E-mail: ce191022@meiji.ac.jp

【はじめに】 In 系酸化物は In 元素の酸素かい離 エネルギーが小さいために容易に酸素欠損(Vo)を 生成しやすいことから、近年、大きな酸素かい離 エネルギーを持つ元素を添加することで Vo の抑 制を試みた In-Si-O 及び In-Si-C-O をチャネル材料 に用いた TFT が報告されている[1,2]。これまでに、 我々は原子層堆積 (Atomic layer deposition: ALD) 法で、成長温度を制御することで炭素ドープした アモルファスなIn₂O₃膜(carbon-doped In₂O₃)を作製 でき、それをチャネルに用いた TFT で、ノーマリ オフが可能な正の Von を示すトランジスタ特性を 報告した [3]。しかし、 PVD 法及び ALD 法で作 製した In₂O₃ TFT の Negative gate bias stress (NBS) 及び Positive gate bias stress (PBS)における信頼性 特性に関する報告例は非常に少ない。本研究では、 アモルファス carbon-doped In₂O₃ 膜をチャネル材 料とし、プロセス温度150℃の低温で作製したバ ックゲート型 TFT を作製して、air 及び N2雰囲気 における NBS 及び PBS でのトランジスタ特性に ついて調べた結果を報告する。

【実験方法】熱酸化膜(250 nm)付き p++-Si 基板に、 ALD 法で膜厚 5 nm の Al₂O₃層を作製した。続い て、InEtCp 原料及び H₂O/O₃ 酸化剤ガスを用いた ALD 法により、成長温度 150 ℃ で carbon-doped In₂O₃膜(InO_{1.16}C_{0.04})を5nm 成膜した。次にフォト リソプロセスでチャネルを形成し、続いて Ti/Au のソース・ドレイン電極を形成することでバック ゲート TFT を作製した。最後に、150 ℃ で 150 min のO₃アニールを実施した。InO_{1.16}C_{0.04} TFT の NBS 及び PBS 特性は、air 及び N2雰囲気中、暗室で、 各々、Vg-Vthを-20、-5 V及び5、20 V 印可してス トレス時間 10800 s まで変えて測定した。

10-

10-8

(a)NBS(V_{g} - V_{th} = -5 V) L/W = 12/5 µm, in air

【結果】 InO_{1.16}C_{0.04} TFT の N₂雰囲気中、NBS 及 びPBSにおける閾値電圧のシフト($\Delta V_{\rm th}$)をFigure 1 に示す。NBS では、 V_g - V_h が-5 V 及び-20 V におけ るストレス時間 10800s 後の ΔVth は各々、-1.9 V 及 び-3.6 Vを示し、バイアスストレス電圧が大きく なると負の $\Delta V_{\rm th}$ は増大した。一方、PBS では、 $V_{\rm g}$ - $V_{\rm th}$ が5V及び20Vにおけるストレス時間10800sの ΔV_hは各々、0.5 V 及び0.7 V であり、バイアスス トレス電圧の影響は認められなかった。これは、 ホールトラップサイトが浅い準位から深い準位に 広く分布しているのに対して、電子トラップサイ トは主に浅い準位にのみ局在しているためと考え られる。Air 中、ストレス時間 0, 300, 1000, 3000, 7200 及び 10800 s における InO_{1.16}C_{0.04} TFT の NBS 及びPBSのId-Vg特性を各々、Figure 2(a)及びFigure 2(b)に示す。NBS 及び PBS の V_e-V_{th} 値は各々、-5 V 及び5Vとした。Air 中NBS ではストレス時間が 増加するに従って Vth は負方向ヘシフトした。ま た、ストレス時間 10800 s 後の N₂中 NBS の ΔV_{th} 値と比べると、約1.3倍大きかった。これはair中 の H₂O 分子が InO_{1.16}C_{0.04} チャネルへ吸着して、 H2Oが正イオンとなって電子をチャネルに供給し、 結果としてキャリア濃度が増加したためと考えら れる[4]。一方、air 中 PBS ではストレス時間 1000 s まで急激に正方向に Vth シフトした後、そのシフ トは+2.5Vで飽和した。ストレス時間 10800 s 後の $air 中 PBS の \Delta V_{th} 値は N_2 中 PBS と比べて、約4.0$ 倍大きかった。これは air 中 PBS で、air 中の酸素 が InO_{1.16}C_{0.04} チャネルに吸着して、チャネルから 電子を捕獲することでキャリア濃度が減少したた めと考えている[4]。

【謝辞】 本研究は JSPS 科研費 JP20H02189 の助 成を受けたものです。

References

(2014).

66-68 (2014)

[1] K. Kurishima, et al., ECS

Trans 86 135-145 (2018)

[2] N. Mitoma, et al., Appl.

Phys. Lett., 104, 102103

[3] R. Kobavashi et al., ECS

[4] T.-M. Pan et al., IEEE

Electron Device Lett., 35,

Trans 92 3-13 (2019)

(b)PBS(V_{g} - V_{th} = 5 V) L/W = 12/5 µm, in air

under NBS and PBS in N2.

10-6

10-8

Fig. 2 I_{d} - V_{g} characteristics of InO_{1.16}C_{0.04} TFT under (a) NBS and (b) PBS in air.