AlSb/GaSb バッファが GaInSb HEMT の電気的特性に与える影響

Effect of AlSb/GaSb buffer on electronic properties of GaInSb HEMT structures 東理大基礎工¹, 情報通信研究機構², ^O林拓也¹, 平岡瑞穂¹, 大金剛毅¹, 國澤宗真¹, 岸本尚之1,渡邊一世2,山下良美2,原紳介2,町田龍人2,笠松章史2,遠藤聡1,藤代博記1 TUS¹, NICT², °T. Hayashi¹, M. Hiraoka¹, G. Ogane¹, M. Kunisawa¹, N. Kishimoto¹, I. Watanabe², Y. Yamashita², S. Hara², R. Machida², A. Kasamatsu², A. Endoh¹, H. I. Fujishiro¹ E-mail: 8119547@ed.tus.ac.jp

[背景·目的]

電子の有効質量が軽くかつ電子移動度が高い Sb 系高電子移動度トランジスタ (high electron mobility transistor, HEMT) は THz 領域で動作可能な高周波・低消費電力デバイスとして期待され ている。我々は以前に、InSb[1]と GaInSb[2]をチャネル層に用いた HEMT の開発を行ってきた。 しかしながら、Sb 系 HEMT においては格子整合する適当な基板が存在しないため、GaAs 基板上 に成長させることが多い。それによって、格子緩和により転位が発生し、転位が電子の散乱源と なって電気的特性の劣化が起こる。近年、転位を抑制するバッファ層の開発が幅広く行われてい るが、転位の伝播を抑制する方法の一つとして AISb 転位フィルタ層の開発が行われている[3]。

我々は以前 LT-AlSb 層および Al0.25In0.75Sb メタモルフィックバッファ層を導入していた。本研究 では、GaSb/AlSb バッファ層およびグレイデッドバッファ層を導入し、AlSb/GaSb 膜厚の組合わせ を変えて HEMT 構造を成長し GaInSb HEMT 構造において特性向上に適するバッファ構造を検討 した。

[実験及び結果]

Fig. 1 は、分子線エピタキシー(molecular beam epitaxy, MBE)法により GaAs(100)基板上に成長 した5つの GaInSb HEMT 構造の模式図である。作製した5つの GaInSb HEMT 構造では、バッフ ァ層の効果を比較するためにバッファ層より上の GaInSb OW 構造を同じにした。(a)はメタモルフ ィックバッファ構造、(b)はグレイデッドバッファ構造、(c)-(e)はグレイデッドバッファに AlSb/GaSb バッファ構造を導入した HEMT 構造である。(c), (d), (e)は AlSb/GaSb の膜厚をそれぞれ 125/125 nm, 75/175 nm, 25/225 nm とし、膜厚の差による結果が生じないよう AlSb/GaSb バッファ の合計の膜厚を 250 nm に固定した。

Fig. 2は、それぞれの構造における貫通転位と電子移動度の関係である。貫通転位の値は AFM 画像より求めた。全試料においてシート電子濃度はほぼ一定であった。グレイデッドバッファを 導入することで AlInSb/AlSb 界面で発生する貫通転位が減少した。AlSb/GaSb バッファ構造を導入 することで貫通転位は更に減少し、電子移動度が増加した。貫通転位が減少すると電子移動度は 増加する傾向にあることがわかった。したがって、GaInSb HEMT 構造においてグレイデッドバッ ファおよび AlSb/GaSb バッファ構造を導入することで高いシート電子濃度を保ちつつ電子移動度 を増大させることができた。

(a)Metamorphic		(b)Graded w/o GaSb		(c), (d), (e)Graded w/ GaSb			Threading dislocation days					
GaAs (100) substrate		GaAs (100) substrate		GaAs (100) substrate			0.0	0.5	1.0	1.5	2.	
LT-AISb	1.5 nm	LT-AISb	1.5 nm	GaSb $d_{GaSb} = 125$	5, 175, 225 nm		5.0					
AISb	250 nm	AISb	250 nm	AISb d _{AISb} = 1	25, 75, 25 nm		5.5					
Al _{0.25} In _{0.75} Sb	1500 nm	Al _{0.25} In _{0.75} Sb ↑ AISb	1750 nm	Al _{0.25} In _{0.75} Sb ↑ AISb	Al _{0.25} In _{0.75} Sb ↑ 1750 nm AISb	1/µ [1	6.0		(d) 🔶 (d		(e)	
		Al _{0.25} In _{0.75} Sb	500 nm	Al _{0.25} In _{0.75} Sb	500 nm	0-21			(c)			
Al _{0.40} In _{0.60} Sb	15 nm	Al _{0.40} In _{0.60} Sb	15 nm	Al _{0.40} In _{0.60} Sb	15 nm	Vslc	6.5			(b)		
Ga _{0.22} In _{0.78} Sb	20 nm	Ga _{0.22} In _{0.78} Sb	20 nm	Ga _{0.22} In _{0.78} Sb	20 nm	m ²]						
Al _{0.40} In _{0.60} Sb	5 nm	Al _{0.40} In _{0.60} Sb	5 nm	Al _{0.40} In _{0.60} Sb	5 nm		7.0					
Al _{0.40} In _{0.60} Sb	25 nm	Al _{0.40} In _{0.60} Sb	25 nm	Al _{0.40} In _{0.60} Sb	25 nm		7. 5	meta	morphi	c burre	r, gra	
InSb	3 nm	InSb	3 nm	InSb	3 nm			• grad	ed w/A	ISb/Ga	iSb I	
				Te	e-δ doping		8.0 T					
				Te	S doning		0 0					

[1] K. Isono et al., Proc. CSW2016, WeD1-5. [2] K.Osawa et al., Ext. Abst. TWHM2019, 6-4. [3] A. Mansoori et al., Solar Energy Material and Solar Cells 185, 21-27 (2018)

Fig. 1 Schematic views of GaInSb HEMT structures. (a) Fig. 2 Comparison of μ with threading contains metamorphic buffer, (b) contains graded buffer, and dislocation density, D_{TD} for five structures. (c)-(e) contain graded and AlSb/GaSb buffer layers.

