相変化材料を用いた中赤外光位相シフタの提案

Proposal of mid-infrared optical phase shifter based on phase change material ^o宮武 悠人¹,何 鐘培¹,牧野 孝太郎²,富永 淳二²,宮田 典幸²,中野 隆志², 関根 尚希¹,トープラサートポン カシディット¹,高木 信一¹,竹中 充¹ 東大院・エ¹,産総研デバ技²

The University of Tokyo, School of Engineering¹ Device Technology Research Institute, AIST²

°Yuto Miyatake¹, Chong Pei Ho¹, Kotaro Makino², Junji Tominaga², Noriyuki Miyata²,

Takashi Nakano², Naoki Sekine¹, Kasidit Toprasertpong¹, Shinichi Takagi¹, Mitsuru Takenaka¹

E-mail: miyatake@mosfet.t.u-tokyo.ac.jp

[はじめに] 中赤外シリコンフォトニクスは、通 信[1]、センシング[2]、深層学習[3]、量子計算[4] などの新しいプラットフォームとして注目され ている。光集積回路の導波路中を伝搬する光の位 相を制御する光位相シフタは、これらの応用を実 現する上で重要な構成要素である。とりわけ、大 規模プログラマブル光集積回路を用いた深層学 習や量子計算の実現のためには、低損失光位相シ フタの実現が強く要求される。

代表的な相変化材料である Ge₂Sb₂Te₅(GST)は、 熱によって結晶相とアモルファス相の間で不揮 発的な相変化が誘起される。GSTの複素屈折率は 1.55 µm においてそれぞれ 7.15+1.12i (結晶相), 4.46+0.127i (アモルファス相)である。この極めて 大きな屈折率変化と吸収変化を利用した近赤外 領域で動作する光スイッチの研究が報告されて いる[5]。しかし、近赤外領域では GST の光吸収 が極めて大きく、GST を用いた低損失光位相シフ タは実現されていない。

本研究では、GSTの光吸収が中赤外領域において近赤外領域よりも低減されることに着目し、中赤外領域で動作する光位相シフタの提案を行い、作製した位相シフタの実験結果を報告する。

[シミュレーション] 図 1 に光位相シフタの断面 構造を示す。幅 600 nm、導波路高さ 220 nm の Si ストリップ導波路に 10 nm の GST が堆積されて いる。波長 2 µm の光の導波モードの実効複素屈 折率は、GST が結晶相とアモルファス相の場合に それぞれ 2.10、2.24+0.017i である。

[素子作製] 異なる長さの GST を堆積した直線導 波路と非対称マッハ・ツェンダー干渉計により、 それぞれ GST の光吸収と位相シフト量の測定を 行った。電子線リソグラフィにより描画を行い、 ICP-RIE によるドライエッチングを行うことで 導波路を形成した。直線導波路と干渉計の片腕に スパッタリングによって GST を堆積し、リフト オフにより GST のパターニングを行った。比較 のために 1.55 µm と 2 µm を動作波長とする位相 シフタをそれぞれ作製した。

[実験結果] 堆積後のGST はアモルファス相であ り、チップ全体をホットプレートにより加熱する ことでGST を結晶相へと相変化させた。図2に 加熱温度の変化に対する吸収と位相シフト量の 変化を示す。図2(a)に示すように、2µmの光位相 シフタの損失は1.55µmの3分の一程度に低減さ れた。また図 2(b)に示すように、GST の結晶化に 伴い大きな位相シフトが誘起された。波長 2 μm で動作させることで光位相シフタの低損失化が 可能であることが分かった。

[謝辞]

本研究の一部は JSPS 科研費 JP20H02198 の助成 を受けたものです。および文部科学省「ナノテク ノロジープラットフォーム」事業(課題番号: JPMXP09F20UT0021)の支援を受けて、東京大学 武田先端知スーパークリーンルーム微細加工拠 点において実施された。

[参考文献]

- [1] R. Soref, Nat. Photo. 9, 358-359 (2015)
- [2] T. Hu et al., Photonics Res. 5, 417-430 (2017)
- [3] Y. Shen *et al.*, Nat. Photo. **11**, 441-447 (2017)
- [4] L. M. Rosenfeld et al., arXiv:1906.10158v1 (2019)
- [5]C. Wu et al., ACS Photonics 6, 87-92 (2019)

Fig. 1. Cross-sectional schematic of a phase shifter.

Fig. 2. Measurement and simulation result of (a) optical loss and (b) phase shift of phase shifter.