ミスト CVD 法を用いて(-201) β-Ga₂O₃ 基板上に成長した κ-Ga₂O₃ 薄膜の構造解析

Microstructure of $\kappa\text{-}Ga_2O_3$ thin films on (-201) $\beta\text{-}Ga_2O_3$ substrates by mist CVD

京工繊大¹, ○梶田 優気¹, 西中 浩之¹, 新田 悠汰¹, 吉本 昌広¹

Kyoto Inst. of Tech. 1, °Yuki Kajita1, Hiroyuki Nishinaka1,

Yuta Arata¹, and Masahiro Yoshimoto¹

E-mail: m0621015@edu.kit.ac.jp

酸化ガリウム(Ga_2O_3)は超ワイドバンドギャップ半導体材料の一つであり、近年パワーデバイスや高周波デバイスの材料として注目されている。その結晶構造としては α 、 β 、 γ 、 δ 、 κ (ϵ)相という 5 種類が知られており、それぞれ異なる性質を持っている[1]。これらの結晶多形の中でも唯一、強誘電体特性を持つ orthorhombic 構造の κ - Ga_2O_3 はその特性を生かした強誘電体トランジスタ(FeFET)や高電子移動度トランジスタ(HEMT)などのデバイスへの応用が期待されている[2]。また、 κ - Ga_2O_3 と β - Ga_2O_3 は格子不整合が小さいため、同じ Ga_2O_3 であるにも関わらず、(-201) β - Ga_2O_3 上へ κ - Ga_2O_3 が結晶成長することが可能である[3]。本検討では、ミスト CVD 法を用いて κ - Ga_2O_3 薄膜を(-201) β - Ga_2O_3 基板上に成長し、その結晶構造を TEM 観察により評価した。

Fig.1(a)に示す界面付近の低倍率 TEM 像から、 κ -Ga₂O₃ 薄膜中でいくつかの成長方向に伸びる線が観察された。これは異なるドメインの境界だと予想され、そのドメインが原因で κ -Ga₂O₃ 薄膜が柱状に成長していることを表していると考えられる。加えて、界面付近に κ -Ga₂O₃ とは異なる構造を持っている厚さ約 50 nm の Ga₂O₃ 膜が確認できた。また、Fig.1(b)に示す高倍率 TEM 像より、Ga₂O₃ 膜と κ -Ga₂O₃ 薄膜との明確な境界は確認できなかったため、 κ -Ga₂O₃ はある一定の膜厚で急に成長し始めるのではなく中間層 Ga₂O₃ と混ざりながら成長し始めると考えられる。

Fig.2(a)、(b)、(c)にそれぞれ κ -Ga₂O₃ 薄膜、 β -Ga₂O₃ 基板、界面付近の Ga_2O_3 膜の SAED 像を示す。 κ -Ga₂O₃ 薄膜と β -Ga₂O₃ 基板の SAED パターンから配向関係は (001) κ -Ga₂O₃ [010] \parallel (-201) β -Ga₂O₃ [010]であることが確認された。また、界面付近の Ga_2O_3 膜では β -Ga₂O₃ 基板とほとんど一致する SAED パターンが得られ、この Ga_2O_3 膜は基板と同じ(-201) β -Ga₂O₃ で構成されていることが分かった。したがって、 κ -Ga₂O₃ 薄膜は (-201) β -Ga₂O₃ 基板上に直接成長するわけではなく、初めに中間層として(-201) β -Ga₂O₃ が成長し、その上に κ -Ga₂O₃ 薄膜が成長していることが明らかになった。

[1]R. Roy et al., J. Am. Chem. Soc., 74, (1952) 719.

[2]F. Mezzadri et al., Inorg. Chem., 55, (2016) 12079.

[3]Y. Oshima et al., J. Appl. Phys., 118, (2015) 085301.

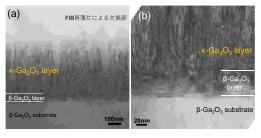


Fig.1 (a) Low- and (b) High- magnification TEM images of the interface between $\kappa\text{-}Ga_2O_3$ thin film and $\beta\text{-}Ga_2O_3$ substrate.

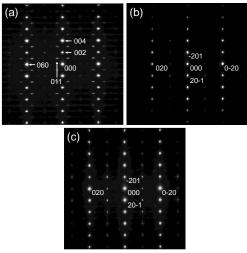


Fig.2 SAED images of (a) $\kappa\text{-}Ga_2O_3$ thin film, (b) (-201) $\beta\text{-}Ga_2O_3$ substrate and (c) intermediate layer.