高速磁気光学イメージングによる パルス電流駆動力下の磁束量子ダイナミクスの観測

Dynamic Evolution of Flux Distributions in a Pulse-driven Superconductor by High-speed Magneto-optical Imaging

東大総合文化¹, 東大物性研²○黒川 穂高¹, 木下 雄斗², 鍋島冬樹¹, 徳永 将史², 前田 京剛¹

Dept. of Bas. Sci., U. Tokyo¹, ISSP, U. Tokyo², ^oHodaka Kurokawa¹, Yuto Kinoshita²,

Fuyuki Nabeshima¹, Masashi Tokunaga², Atsutaka Maeda¹

E-mail: kurokawa@g.ecc.u-tokyo.ac.jp

超伝導薄膜回路は,超伝導量子ビットや超高感度センサ,回路量子電磁気学(circuit-QED)といった最先端の応用/基礎物理の場でますます重要性を増している.一方で薄膜中の電流/磁束密度分布は,磁束量子のピン止めや surface barrier の影響を受け非常に不均一となる[1].そうした不均一性のため,超伝導体は印加した電流や磁場の履歴に依存した複雑な挙動や準安定状態をしばしば示す.したがって,超伝導素子の動作をより正確に理解するためには,電流や磁場をスイープした際の動的な磁束密度分布の変化を観測することが重要だと考えられる.

そこで今回我々は、NbN 薄膜 (Fig.1)にパルス電流を印加した際の磁束密度分布の変化を、高速 磁気光学イメージングを用いて観測した.磁束密度分布の初期状態としては、磁場中冷却 (FC) 状態、ゼロ磁場冷却 (ZFC) 状態、磁束の残留状態 (remanent state)の定性的に異なる3つの状態 を用意した.それぞれについて電流による磁束密度の変化を観測した結果 (Fig.2)、いずれの状態 においても磁束の侵入/脱出には surface barrier がきいていることを明らかにした[2].

 (a) light Substrate MO indicator NbN film In electrodes (b) 100 μm 100 μm -100 μm 	(a) $(1,5)$ $(1,0)$ $(1,5)$ $(1,0)$ $(1,5)$ $(1,0)$ $(1,5)$ $(1,0)$ $(1,5)$ $(1,0)$ $(1,5)$ $(1,0)$ $(1,5)$ $(1,0)$ $(1,5)$ $(1,0)$ $(1,5)$ $(1,0)$ $(1,5)$ $(1,0)$
Fig. 1. (a) Schematic diagram of the cross section of the	Fig. 2. (a) Applied current as a function of time (red
magneto-optical imaging apparatus. (b) Optical image of	line), and the voltage induced by the flow of vortices
the NbN strip.	(blue line). (b) Normalized local intensity change as a
	function of time in the field-cooled (FC) state.

References

- [1] E. Zeldov et al., PRB 49, 9802 (1994). E. Zeldov et al., PRL 73, 1428 (1994).
- [2] H. Kurokawa et al., arXiv: 1911.12605 (APL in press, editor's pick).