Magneto-Optical Surface Plasmon Resonance in Ferromagnetic/Noble Metal Superlattices

(D) Muhammad Arifin^{a,b,*}, Toru Akiyama^a, Tomonori Ito^a, and Kohji Nakamura^a ^aDepartment of Physics Engineering, Mie University, Japan ^bDepartment of Physics, Gadjah Mada University, Indonesia *Email: 419db01@m.mie-u.ac.jp

Magneto-optical (MO) effect allows to improve a sensitivity in surface plasmon resonance (SPR) biosensor where the MO effect increases at the SPR angle so as that the reflectance falls sharply. In the present work, we have demonstrated a giant enhancement of the magneto-optical surface plasmon resonance (MOSPR) in ferromagnetic Fe/noble (M=Cu, Ag, Au) metal superlattices, Fe_x/M_x, where x is the number of atomic-layers, form first-principles calculations. Calculations were carried out by using a full-potential linearized augmented plane wave (FLAPW) method [1], and the diagonal and off-diagonal parts of the absorptive optical conductivity tensor, $\text{Re}(\sigma_{xx})$ and $\omega \text{Im}(\sigma_{yz})$, were estimated by linear response theory. In an optical range (1.6 – 3.3 eV), the Re(σ_{xx}) of Fe_xCu_x is much larger than those of Fe_xAu_x and Fe_xAg_x. In Fe_xCu_x, Re(σ_{xx}) increases in proportion to the number of x. The spectrum ω Im(σ_{yz}) on Fe_xAu_x shows the peak shift from the energy position of 2.0 eV to 2.7 eV and 3.3 eV for x = 1, 2 and 3, respectively. Assumed the Kretschmann configuration with the 4×4 transfer matrix method [2], we have simulated the MOSPR by using gelatin as a sample. The resonance condition in the SPR spectra occurs at an incident angle of 75° , which is in agreement with our previous experiments [3]. On the other hand, the transverse magneto-optical Kerr effect (TMOKE) signal, $\Delta R_{pp}/R_{pp}$, in the resonance condition increases proportionally to the number of x in Fe_x M_x . Additionally, a significant enhancement of the TMOKE signal, by 120%, is observed in Fe₃Cu₃, where the enhancement is mainly due to the MO activity [4]. Further discussions will be presented.

Keywords: magneto-optical surface plasmon resonance, first-principles calculations, enhancement

- [1] K. Nakamura, et al., Physical Review B 67, 14405 (2003)
- [2] Š. Višňovský, et al., Opt Express. 9, 3 (2001)
- [3] D.P. Wardani, et al., Mater. Sci. Forum 948, 146 (2019)
- [4] D. Regatos, et al., J. Appl. Phys. 108, 054502 (2010)