時間・空間・エネルギー分解計測による トポロジカル表面状態の不均一性の可視化

Imaging the Inhomogeneity of Topological Surface State

with Time, Space, and Energetic Resolutions

高エネ研¹, 筑波大数物², 東北大多元研³, 東工大理⁴ 〇 福本 恵紀¹, (**M1**) 深見 優介², (**D**) 志賀 大亮³, 組頭 広志³, 腰原 伸也⁴, 足立 伸一¹

KEK¹, Tsukuba Univ.², Tohoku Univ.³, Tokyo tech.⁴ ^OKeiki Fukumoto¹, Yusuke Fukami², Shiga Daisuke³, Hiroshi Kumigashira³, Shin-ya Koshihara⁴, Shin-ichi Adachi¹

E-mail: keiki@post.kek.jp

三次元トポロジカル絶縁体(3D TI) は,バルク絶縁体であり,表面にはギ ャップレスの金属状態をもつ.表面状 態(SS)特有の電子輸送特性により、原 子スケールの厚さの薄い透明電極など の幅広いアプリケーションが期待され ている.しかし,SSは不純物付着によ る影響が大きく [1,2], その不均一性が 分光研究により示唆されている [3-6]. また,電子輸送特性は,SSに大きく影 響される.そこで,我々は,時間,空 間、エネルギー分解能をもつフェムト 秒光電子顕微鏡を開発し [7-10], 典型 的な 3D TI である Bi₂Se₃ の光励起電子 の動的特性を観測した. Figure 1(a) は, Bi₂Se₃ 表面の光電子顕微鏡像である. 局所的に異なる光電子放出量が SS 密 度に対応することが本研究により明ら かとなった. 光照射によりバルク,お

Figure 1: (a): PEEM image. The contrast presents the density of topological surface state. (b): Simplified Bi_2Se_3 band structure. (c–e): Time and energy resolved data for three regions.

よび,表面準位 (Figure 1(b) 参照) に電子励起し,その再結合寿命を観測した結果が Figure 1(c-e) である.励起光源の光子エネルギーを制御することで,バルクと表面の電子ダイナミクスをエネルギー的に区別して観測している. SS では,グラフェン [8] などと同様に,Dirac 点を介する 2 ps 程度の再結合寿命が観測されているのに対し,バルクは,0.3 eV 程度のバンドギャップがあり,より長い再結合寿命をもつ.

【参考文献】

[1] D. Kong et.al., ACS Nano 5, 4698 (2011). [2] J. Analytis, Phys. Rev. B 81, 205407 (2010). [3] S. Dordevic et.al., J. Phys.: Condens. Matter 25, 075501 (2013). [4] A. Sushkov et.al., Phys. Rev. B 82,125110 (2010). [5] P. Jacquet et.al., Phys. Rev. B 85, 125120 (2012). [6] D. Kim et.al., Nat. Phys. 8, 459 (2012). [7] K. Fukumoto et. al., *Appl. Phys. Lett.* 104, 053117 (2014). [8] K. Fukumoto et. al., *Carbon* 124, 49 (2017). [9] 腰原伸也, 福本恵紀, 特許: WO 2018/159272, 出願日: 2018.09.07. [10] K. Fukumoto et. al., *Appl. Phys. Lett.* 115, 053105 (2019).