Microfluidic Tank Assisted Nicotine Functionalization of Two Dimensional MoS₂

Muhammad Shamim Al Mamun¹, Hiroki Waizumi¹, Tsuyoshi Takaoka², Yudai Tanaka¹, Md Iftekhar Alam¹, Tadahiro Komeda²

Graduate School of Sciences, Tohoku University, Sendai 980-8578, Japan
Institute of Multidisciplinary Research for Advanced Materials, Sendai 980-8577, Japan Email: komeda@tagen.tohoku.ac.jp

Abstract

Recently, molybdenum disulfide (MoS₂) has allured deep research importance due to their exclusive optical, electrical and mechanical properties. Incorporation of MoS₂ into logical applications it is obligatory to functionalize it with the chemical moieties. To avoid the effect of solvent and dopant on the electrode we set up a microfluidic tank over the MoS₂ channel. Here we report the tailoring of electrical properties of mechanically exfoliated MoS₂ by nicotine. Raman spectroscopy and electrical charge transport measurement revealed that nicotine imposes n-doping in MoS₂. The threshold voltage forwarded left side from $\sim 11~V$ to $\sim 35~V$, indicating n-type doping effect. Nicotine functionalization tailored the field effect mobility by a factor of ~ 6.4 without deteriorating the electrical properties of MoS₂ devices.

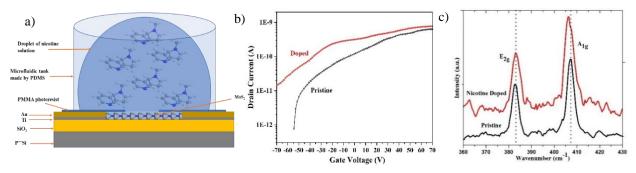


Figure 1. a) Schematic illustration of MoS₂-FET with the microfluidic tank where nicotine solution into the microfluidic tank is shown b) Transfer characteristics of the MoS₂-FET of pristine (black), doped (red) c) Raman spectra of MoS₂ of pristine (black) and doped (red).

References

- Lingming Y, Kausik M, Han L, Yuchen D, Heng W, Michael H, P Y Hung, Robert T, Wilman T, Chris H and Peide D Y 2014 Chloride Molecular Doping Technique on 2D Materials: WS₂ and MoS₂ Nano Lett. 14, 6275–6280
- 2. Daisuke K, Mahmut T, Peida Z, Jeong S K and Ali J 2014 Air-Stable Surface Charge Transfer Doping of MoS₂ by Benzyl Viologen J. Am. Chem. Soc. 136 7853–7856
- 3. Shaista A, Arun K S and Jonghwa E 2015 Chemical doping of MoS₂ multilayer by p-toluene sulfonic acid. Sci. Technol. Adv. Mater 16 035009