Observing photovoltaic action in γ-CuI/Ga₂O₃ heterojunction with deep UV irradiation

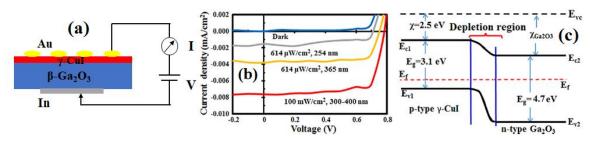
Nagoya Institute of Technology¹, Necmettin Erbakan University², Ajinkya K. Ranade^o (D)¹, Muhammed

Emre Ayhan², Mandar Shinde¹, Bhagyashri Todankar¹, Pradeep Desai¹, Masaki Tanemura¹, Golap

Kalita¹

E-mail: ajinkyaranade3@gmail.com

1. INTRODUCTION


Gallium oxide (Ga2O3) with a band gap of in the range of 4.5–4.9 eV is suitable wide band gap semiconductor for deep UV photodetector and power electronic device applications. β -Ga2 O 3 is a n-type semiconductor due oxygen vacancy which opens possibilities to fabricate a p-n heterojunction with a suitable n-type semiconductor. In this prospect, zinc blend γ -copper iodide (γ -CuI) a p-type semiconductor with bandgap of 3.1eV is good candidate to integrate with β -Ga2O3. Here, we report on fabrication of γ -CuI/Ga2O3 heterojunction which showed photovoltaic action under deep UV irradiation.

2. EXPERIMENTAL

CuI layer is deposited on β -Ga2O3 substrate using high vacuum thermal evaporation process at a chamber pressure of 6×10-4 Pa at current of 40 A for 20 sec. with substrate temperature of \leq 50 °C. Further, Gold (Au) and Indium (In) are deposited using high vacuum evaporation process as metal contacts for measuring *J*-*V* characteristics of γ -CuI/Ga2O3 heterojunction.

3. RESULT AND DISCUSSION

Figure 1 (a) shows schematic diagram of the fabricated vertical of γ -CuI/Ga2O3 heterojunction. Figure 1(b) shows the J-V characteristics under dark as well as UV light. A rectifying diode behavior was observed under dark conditions. Further, the device was tested under 254 nm solar blind irradiation as well as longer UV wavelength (365nm) and 300-400 nm UV light. Interestingly, a photovoltaic action is observed under all three different UV irradiations with open circuit voltage (Voc) values of 0.706 V under 254nm UV light, 0.736 V under 365nm UV light and 0.77 V under high intensity 300-400 nm UV light. Figure 1 (c) shows the expected band diagram of γ -CuI/Ga2O3 heterojunction. Thus, the fabricated vertical γ -CuI/Ga2O3 heterojunction showed a excellent diode characteristics as well as excellent UV light induced photovoltage.

Figure 1 (a) Schematic diagram of fabricated γ -CuI/Ga2O3 heterojunction. (b) *J-V* characteristics under applied voltage of -0.2V to 0.8V showing photovoltaic action under UV light. (c) Expected band diagram of γ -CuI/Ga₂O₃ heterojunction.

4. CONCLUSIONS

In conclusion, we observed that fabricated γ -CuI/Ga2O3 heterojunction demonstrated diode characteristic along with photovoltaic action under deep UV irradiation (254nm) as well as under 365nm and 300-400nm irradiation.

References:

1) Muhammed Emre Ayhan, Mandar Shinde, Bhagyashri Todankar, Pradeep Desai, Ajinkya Ranade,

Masaki Tanemura Masaki Tanemura, Golap Kalita Materials Letters, https://doi.org/10.1016/j.matlet.2019.127074.

2) Golap Kalita,* Rakesh D. Mahyavanshi, Pradeep Desai, Ajinkya K. Ranade, Masaharu Kondo,

Takehisa Dewa, and Masaki Tanemura, Phys. Status Solidi RRL 2018, 12, 1800198.