# Xe<sub>2</sub>\*真空紫外光を励起源とする紫外ランプ

UV lamps excited by Xe<sub>2</sub><sup>\*</sup> VUV light source

鳥取大学院<sup>1</sup>, ㈱クォークテクノロジー<sup>2</sup>, <sup>O</sup>(M1) 幡中悠一郎<sup>1</sup>, 石垣雅<sup>1</sup>, 大観光徳<sup>1</sup>,

## 岩田海星<sup>2</sup>, 中村勝<sup>2</sup>

### Tottori Univ.<sup>1</sup>, QUARK TECHNOLOGY CO.<sup>2</sup> °Y. Hatanaka<sup>1</sup>, T. Ishigaki<sup>1</sup>, K. Ohmi<sup>1</sup>,

K. Iwata<sup>2</sup>, and M. Nakamura<sup>2</sup>

#### E-mail: ohmi@tottori-u.ac.jp

#### 1. はじめに

現在,地球環境問題の観点から,半導体用露 光装置に広く用いられている高圧水銀ランプ の代替として,水銀フリー紫外(UV)ランプの 開発が求められている.本研究では,波長 172nmの真空紫外(VUV)Xe2\*エキシマランプ を励起光源とし,水銀共鳴線(254 nm)に近い 波長域に発光ピークを有する紫外ランプの開 発を目指す.Bi<sup>3+</sup>, Pr<sup>3+</sup>を発光中心とする蛍光体 を合成し,VUV励起時のフォトルミネッセン ス(PL)強度を評価した.[1]

#### 2. 実験方法

YPO<sub>4</sub>:Bi, YPO<sub>4</sub>:Pr, YBO<sub>3</sub>:Pr 蛍光体を固相合 成法により作製した. 出発原料は, YPO<sub>4</sub>:Bi は Y<sub>2</sub>O<sub>3</sub>, (NH<sub>4</sub>)<sub>2</sub>HPO<sub>4</sub>, Bi<sub>2</sub>O<sub>3</sub>, YPO<sub>4</sub>:Pr は Y<sub>2</sub>O<sub>3</sub>, (NH<sub>4</sub>)<sub>2</sub>HPO<sub>4</sub>, Pr<sub>2</sub>O<sub>3</sub>, YBO<sub>3</sub>:Pr は Y<sub>2</sub>O<sub>3</sub>, (NH<sub>4</sub>)<sub>2</sub>HPO<sub>4</sub>, Pr<sub>2</sub>O<sub>3</sub>, YBO<sub>3</sub>:Pr は Y<sub>2</sub>O<sub>3</sub>, H<sub>3</sub>BO<sub>3</sub>, Pr<sub>2</sub>O<sub>3</sub> である. 各混合粉末を, 大気雰囲気中で 1400°C, 4 時間焼成した. X 線回折測定により, 全試料ともほぼ単一結晶相が生成されている ことを確認した. 作製した蛍光体試料を, 薄溝 (500 μ m)を有する石英ガラス上に平坦に均し, Xe<sub>2</sub>\* VUV 光源で励起し, 試料を挟んで光源と 反対側に光ファイバープローブを設置し, 紫 外分光器(AvaSpec-ULS2048L)を用いてPL スペ クトルを測定した.

#### 3. 実験結果及び考察

Figure 1 に同一条件で測定した PL スペクト ルを示す. YPO<sub>4</sub>:Biからは 240 nm 付近にピーク を持つ Bi<sup>3+</sup>の内殻遷移  $6s6p \rightarrow 6s^2$ に起因するブ ロードな発光が観測される.また YPO<sub>4</sub>:Pr と YBO<sub>3</sub>:Pr からは,  $Pr^{3+}$ の内殻電子  $4f5d \rightarrow 4f^2$ によ る発光が見られる.これらの中で YPO<sub>4</sub>:Bi の PL 強度が極めて大きいことが分かる.

**Figure 2** に **YPO**<sub>4</sub>:**Bi** 粉末試料の粒度分布(体 積基準)を示す. D<sub>50</sub>は 40~50 μm である.本ラ ンプと同様に VUV を励起光源とする一般的な PDP 用蛍光体に比べて一桁程度大きい. SEM 像からも,同程度の大きさの凝集した粒子が 確認される.

Figure 3 に YPO<sub>4</sub>:Bi の PL 強度の充填厚依存

性を示す. PL 強度はスペクトルの波長積分値 を示す. 充填厚を薄くするとともに発光量が 増加することが分かる. 最も薄い厚さは 50 µm であり, Figure 2 の結果を考慮すると, ほぼ粒 子1つ分の大きさに対応する. 蛍光体の励起効 率を向上させるためには, 細密充填が必須で あり, より粒径を細かくする必要がある.

[1] M. Broxtermann, et al., J. Lumin. 202, 450







Fig. 2. Particle size distribution of YPO<sub>4</sub>:Bi sample. Inset figure shows SEM image.



Fig. 3. Powder-thickness dependence of PL wavelength-integrated intensity of YPO<sub>4</sub>:Bi samples.