微細ゲートオールアラウンド(GAA)シリコンナノワイヤトランジスタにおける 極めて大きなランダムテレグラフノイズ(RTN)の解析

Analysis of Extremely Large Random Telegraph Noise (RTN)

in Ultra-Narrow Gate-All-Around (GAA) Silicon Nanowire Transistors

¹ 東大生研,² 東大 d.lab ^(M2)木村迅利¹,水谷朋子¹,竹内潔¹, 更屋拓哉¹,小林正治^{1,2},平本俊郎¹

¹IIS, The Univ. of Tokyo, ²d.lab, The Univ. of Tokyo, ^oHayato Kimura¹, Tomoko Mizutani¹, Kiyoshi Takeuchi¹, Takuya Saraya¹, Masaharu Kobayashi^{1,2}, and Toshiro Hiramoto¹, E-mail: kimura@nano.iis.u-tokyo.ac.jp

【序】ゲートオールアラウンド(GAA)構造を備えたシリコンナノワイヤトランジスタは次世代のデバ イス候補として大きな注目を集めている[1].一方,トラップによるランダムテレグラフノイズ(RTN) は微細なトランジスタの主要な課題の一つとされている[2] [3].また, 微細なシリコン GAA ナノワイ ヤトランジスタの RTN の振幅分布はバルクトランジスタよりもサイズ依存性が強いことが報告されて いる[4]. 今回, バルクトランジスタや SOI トランジスタでは見られない微細シリコン GAA ナノワイ ヤトランジスタにおける極めて大きなランダムテレグラフノイズ(RTN)について報告する. 【デバイス 構造】n型とp型のシリコンGAAナノワイヤトランジスタを試作した.パラメータはTable1に示す. 【結果】Fig. 1 に n 型ナノワイヤトランジスタのI_d-V_a特性を示す. V_aを上げていくとV_a = 0.5V付近で 電流が突然減少し、 V_{th} が上昇する. Fig. 1 から V_{th} のシフト ΔV_{th} を算出すると $\Delta V_{th} = 0.545$ Vとなる. こ こで V_{th} は $I_d = 1 \times 10^{-9}$ A で定義した. Fig. 2 は $V_g = 0.4$ Vに固定したときの電流 I_d の時間依存性である. 極めて大きな RTN の電流振幅を観測した.トラップが電流に及ぼす影響が非常に大きいため、チャネ ルの近くにトラップがあると考えられる. Fig. 3 は τ_c/τ_p の V_g 依存性である. ここで τ_c , τ_e はそれぞれ捕 獲時間(t_c の期待値),放出時間(t_e の期待値)である.ゲート酸化膜中にあるトラップの深さを $\frac{x}{T_{rx}}$ = $-\frac{k_BT}{q}\delta \ln(\tau_c/\tau_e)/\delta V_G[5]$ から算出した. xはトラップの酸化膜界面からの距離である(Fig. 3 挿入図). 通 常は酸化膜中にトラップがあるため $\frac{x}{T_{ox}} \leq 1$ となるが、Fig. 3 の V_g 依存性から算出すると T_c/τ_e の V_g 依存性 が異常に強く, $\frac{x}{T_{or}} = 1.6$ となり、トラップが酸化膜の外側に存在すると算出された.一方、測定された tcの統計分布は指数分布であることが確認されており(図示していない),統計的にはキャリアの捕獲, 放出はランダムで通常の RTN とかわりない.【結論】微細シリコン GAA ナノワイヤトランジスタにお いて、極めて大きな RTN を観測した. τ_c/τ_e の V_g 依存性が非常に強く、トラップの位置が従来モデルで 説明できないことが明らかとなった.【文献】[1] K. J. Kuhn, IEEE TED, vol. 59, p.1813, 2012. [2] N. Tega et al., VLSI Tech., p. 50, 2009. [3] K. Takeuchi et al., VLSI Tech., p. 54, 2009. [4] H. Qui et al., VLSI, p. T50, 2017. [5] T. Nagumo et al., IEDM, p.628, 2010.

