Chemically tuned p- and n-type WSe₂ monolayers with higher carrier mobility for advanced electronics

^oHyun Goo Ji,¹ Pablo Solís-Fernández,² Daisuke Yoshimura,³ Mina Maruyama,⁴ Takahiko Endo,⁵ Yasumitsu Miyata,⁵ Susumu Okada,⁴ Hiroki Ago^{*,1,2}

¹ Interdisciplinary Graduate School of Engineering Sciences, Kyushu University
² Global Innovation Center (GIC), Kyushu University
³ Kyushu Synchrotron Light Research Center
⁴ Graduate School of Pure and Applied Sciences, University of Tsukuba
⁵ Department of Physics, Tokyo Metropolitan University
E-mail : h-ago@gic.kyushu-u.ac.jp

Semiconducting transition metal dichalcogenides (TMDCs), such as WSe₂ and MoS₂, have been attracting great interest due to their superior and unique properties [1]. Although both p- and n-type materials are required for their application in advanced electronics, most of semiconducting TMDCs exhibit n-type or ambipolar behavior. Therefore, several approaches have been reported to control the electrical polarity of semiconducting TMDCs, such as substitutional doping of transition metals and metal nanoparticle deposition [2,3]. However, these methods have critical disadvantages, such as carrier scattering and photoluminescence quenching. As an alternative, chemical doping can be a promising method. Although the usefulness of chemical doping has been demonstrated, the controlled p- and n-type doping with a single TMDC material has not been reported so far [4].

In this work, we demonstrate the doping of CVD grown-WSe₂ for selective conversion from ambipolar to p- or n-type semiconductors [5]. This was done by using 4-nitrobenzenediazonium tetrafluoroborate (4-NBD) and diethylene triamine (DETA) molecules as p- or n-type dopants, respectively. After the doping process, WSe₂ showed clear p- or n-type transport properties and the effective carrier mobility showed significant increase up to $10^3 \sim 10^4$ times (Fig. 1). To demonstrate utilization of our chemically doped p- and n-type WSe₂, a complementary metal-oxide-semiconductor inverter was fabricated which showed extremely low power consumption and high voltage gain (~10) (Fig. 2). Moreover, a p-n junction was fabricated within single WSe₂ grain by spatially controlled doping technique, and it showed clear rectification behavior as well as optical response under laser illumination (Fig. 3).

References

[1] Q. H. Wand *et al.*, *Nat. Nanotechnol.*, **2012**, *7*, 669. [2] K. Zhang *et al.*, *Nano Lett.*, **2015**, *15*, 6586. [3] C. H. Chen *et al.*, *2D Mater.*, **2014**, *1*, 034001. [4] S. Zhang *et al.*, *Adv. Mater.*, **2018**, *30*, 1802991. [5] H. G Ji *et al.*, *Adv. Mater.*, **2019**, *31*, 1903613.

Fig. 1. Transfer curves of pristine and doped WSe₂

Fig. 2. V_{in} - V_{out} relationship measured from a CMOS inverter

Fig. 3. Output curves of WSe₂ before and after forming a p-n junction