小さな△*E*stを有する有機レーザー色素-ホスト材料選択の拡大-

Novel lasing dye having small ΔE_{ST} easing the selection of host materials 九大 OPERA¹, JST/ERATO², 九大 I²CNER³, B. S. B. Karunathilaka^{1,2}, U. Balijapalli¹, C. A. M. Senevirathne^{1,2}, 江崎有^{1,2}, 松島敏則^{2,3*} A. S. D. Sandanayaka^{1,2*} and 安達千波矢^{1-3*}

OPERA, Kyushu Univ.¹, JST/ERATO², I²CNER, Kyushu Univ.³, B. S. B. Karunathilaka^{1,2}, U. Balijapalli¹,

C. A. M. Senevirathne^{1,2}, Yu Esaki^{1,2}, T. Matsushima^{2,3}* A. S. D. Sandanayaka^{1,2}* and C. Adachi¹⁻³*

E-mail: tmatusim@i2cner.kyushu-u.ac.jp, sandanay@opera.kyushu-u.ac.jp, and adachi@cstf.kyushu-u.ac.jp

Quenching of singlets by long lifetime triplets is a serious issue for lasing from organic dyes, especially under long excitation duration^[1]. To remove unnecessary triplets, organic laser dyes are often dispersed into a film of a host material having a rather large singlet-triplet energy gap (ΔE_{ST}) such as anthracene derivatives. However, finding such host materials are limited and another materials combination has been anticipated. In this study, we developed a novel laser dye of 2,6-dicyano-1,1diphenyl- $\lambda^5 \sigma^4$ -phosphinine (DCNP)^[2] having a small ΔE_{ST} on the basis of the concept of thermally

activated delayed fluorescence-based materials. Since the ΔE_{ST} of DCNP is as small as 0.44 eV, we can employ 4-4'-bis[(*N*-carbazole)styryl]biphenyl (BSBCz) as a triplet quenching host, i.e., the triplets formed on DCNP are easily transferred to BSBCz as shown in Fig. 1a.

A 1 wt.%-DCNP-doped BSBCz film [photoluminescence quantum yield (PLQY) =83 %], which was formed on a mixed-order distributed feedback grating, showed lasing with a low threshold value of $0.86 \,\mu J \,cm^{-2}$ and a FWHM value of 0.5 nm (Fig. 1b). Because of suppressed singlet quenching in this system, we were able to operate it under truecontinuous-wave operation (Fig. 1c), with a half-life of 2-3 min at a 3.6 kW cm⁻² excitation power. This result would provide alternative host-guest strategy of an fabricating higher-performing laser devices.

Figure 1: (a) Excited state energies of DCNP and BSBCz. Laser properties of a DCNP-doped BSBCz DFB laser device under optical (b) pulse or (c) continuous-wave excitation.

[1] Appl. Phys. Express, 12, 061010, 2019. [2] J. Am. Chem. Soc., 140, 2046, 2018.