Enhancing Stability of Exciplex-based OLED by Utilizing TADF-Type Acceptor 九大 OPERA¹, JST · ERATO², WPI · I²-CNER³, 関西学院大学理工学部化学科⁴

[○](M2) Nguyen Ba Thanh¹, 中野谷 一^{1,2,3}, 畠山 琢次⁴、 安達 千波矢^{1,2,3}

OPERA, Kyushu Univ.¹, JST-ERATO.², I2-CNER, Kyushu Univ.³, Department of Chemistry, School

of Science and Technology, Kwansei Gakuin Univ.⁴

^OThanh Ba Nguyen¹, Hajime Nakanotani^{1,2,3}, Takuji Hatakeyama⁴, Chihaya Adachi^{1,2,3}

E-mail: nakanotani@ctf.kyushu-u.ac.jp, adachi@ctf.kyushu-u.ac.jp

Exciplex systems exhibiting thermally activated delayed fluorescence (TADF) hold a great potential to improve organic light-emitting diode (OLED) performances.^[1,2] However, the operational lifetime of current exciplex-based devices, unfortunately, falls far behind the requirement for commercialization.

Direct charge recombination on an acceptor molecule serves as a potential degradation mechanism for exciplex-based OLEDs (Fig. 1). Under device operation, a high-density accumulation of holes inside an emitting layer would inject holes into the highest-occupied-molecular-orbital (HOMO) of acceptor molecules, leading to an unwanted carrier recombination on the acceptor molecules, damaging the exciplex system. That problem can be addressed by changing the host from a conventional acceptor to a donor (D) -acceptor (A)-type acceptor molecule. Further, since the D unit is responsible for the HOMO in the D-A type acceptor molecule, carefully chosen D moiety would provide TADF-type acceptor. When unwanted carrier recombination happens on the TADF-type acceptor, the electrically generated triplets can convert to the singlet excited state (S_1) through reverse intersystem crossing, and the S_1 of the acceptor molecule then again decays to the exciplex formation (Fig. 1). To investigate this hypothesis, a comprehensive study was performed using the exciplex systems containing Tris-PCz (Donor) and a series of TRZ derivatives (Acceptor).

Figure 2 clearly emphasizes the importance of D-A-type (no TADF activity) and TADF-type acceptors in term of device stability. Moreover, by employing 'exciton recycling' strategy (**Fig. 1**), a

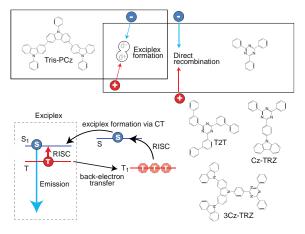


Figure 1. Degradation mechanism of exciplex-based OLED and 'exciton recycling' system in TADF-acceptor exciplex

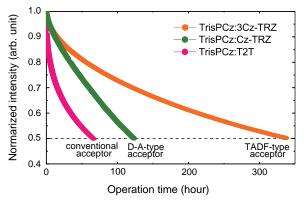


Figure 2. Normalized EL durability of OLEDs at constant current density of 3.3 mA.cm⁻². Initial luminance intensities are 830, 920, and 1030 cd \cdot m⁻² for 3Cz-TRZ, Cz-TRZ, and T2T based exciplex OLEDs, respectively.

three-fold increased operational lifetime could be achieved with Tris-PCz:3Cz-TRZ systems (**Fig. 2**). This research provides an important step for exciplex-based devices toward the significant improvement of operational stability.^[3]

References:

[1] K. Goushi, et al, Nat. Photonics. 2012, 6, 253.

- [2] H. Nakanotani, et al, Sci. Adv. 2016, 2, 2, e1501470.
- [3] T. B. Nguyen, et al, Adv. Mater. (in press).