コンタクトレス光電気化学エッチングによる リセスゲート AIGaN/GaN HEMT の作製

Fabrication of recessed-gate AlGaN/GaN HEMTs utilizing contactless photoelectrochemical (CL-PEC) etching 北大量集センター¹、サイオクス² ⁰渡久地 政周¹、三輪 和希¹、堀切 文正²、福原 昇²、成田 好伸²、 市川 磨²、磯野 僚多²、田中 丈士²、佐藤 威友¹ RCIQE, Hokkaido Univ.¹, SCIOCS Co. Ltd.² ^oM. Toguchi¹, K. Miwa¹, F. Horikiri², N. Fukuhara², Y. Narita² O. Ichikawa², R. Isono², T. Tanaka², and T. Sato¹ E-mail: toguchi@rciqe.hokudai.ac.jp

1. はじめに: AlGaN/GaN HEMT へのリセスゲート構造の適用は、閾値電圧の制御の観点から期 待されている。これまでに我々は、光電気化学(PEC)エッチングを用いたリセス加工プロセスが、 素子の伝達特性の向上と閾値電圧の制御に有望であることを示した[1]。今回は、実験系が大幅に 簡易化されたコンタクトレス光電気化学(CL-PEC)エッチング[2,3]を適用し、リセスゲート型シ ョットキーHEMT を作製した。従来の PEC エッチングで作製した素子と比較して、同等以上の 加工平坦性と素子特性の向上が得られたので報告する。

2. 実験条件: デバイス作製に使用した試料構造とCL-PEC エッチングのセットアップを図1に示 す[4]。エッチング保護マスクとして試料表面にポジ型のフォトレジストをスピンコートし、フォ トリソグラフィによってゲートパターンを転写した。試料を0.025 M ペルオキソ二硫酸カリウム 溶液(K₂S₂O₈: pH = 3.4)に浸し、上面からUVC 光(中心波長 260 nm, 4 mW/cm²)を1時間照射す ることで、マスク開口部にのみ CL-PEC エッチングを施した。薬液処理後、原子間力顕微鏡(AFM) を用いてエッチング深さ・表面形状を評価した。その後、誘導結合プラズマ反応性イオンエッチ ング(ICP-RIE)により素子間分離を行い、ソース-ドレイン電極(Ti/Al/Ti/Au)、ショットキーゲート 電極(Ni/Au)を形成した。ゲート長は 3~10 µm、ゲート幅は 100 µm に設計した。

3. 実験結果: AFM 観察により、エッチング面の表面モホロジは良好で(rms[7 µm×7 µm]: 0.9 nm)、平坦な加工面が得られることが分かった。本プロセスによりゲート直下の AlGaN の残存膜 厚を約4nm まで薄層化させたリセスゲート HEMT の出力特性(Ip-Vp)・伝達特性(Ip-Vg)を、図2、3 にそれぞれ示す。本プロセスにより作製した素子は良好なピンチオフ特性を示し、また、無加工の AlGaN/GaN ショットキーHEMT と比較して、SS 値が大幅に向上した。これは、AlGaN 表面層のウェットエッチングにより、損傷のない良好なショットキーゲート界面が形成されたことを示唆している。また、AlGaN の薄層化により閾値電圧は正側にシフトしノーマリーオフ動作を達成した。閾値電圧に関してチップ上の素子のばらつきは、その標準偏差が3.8 mV であり、通常の PEC エッチング加工素子の19 mV に比べ、優れた均一性が得られることが分かった。

【謝辞】本研究は JSPS 科研費 JP16H06421, JP17H03224 の助成を受けたものです。 [1] Y. Kumazaki et al., JJAP, **121**, 184501 (2017). [2] F. Horikiri, et al., APEX, **12**, 031003 (2019). [3] F. Horikiri et al., IEEE-TSM. **32**, 489 (2019). [4] M. Toguchi, et al., APEX, **12**, 066504 (2019).

Fig.1. Schematic illustrations of contactless PEC etching and sample.

Fig.2. Output I-V characteristics of the recessed-gate HEMT.

Fig.3. Transfer characteristics of the recessed-gate HEMT.