各種半導体の中赤外 FEL 照射による微細 LIPSS 形成条件

~微細 LIPSS 形成閾値と融解閾値~

Conditions for fine LIPSS formation induced with mid-infrared FEL for semiconductors

- Thresholds of LIPSS formation and melting -

[•](M1)田中 陽平¹, (M2)細川 誓¹, 橋田 昌樹^{1,2}, 全 炳俊³, 長島 健⁴,

尾崎 典雅⁵, 井上 峻介^{1,2}, 阪部 周二^{1,2}

京都大学大学院理学研究科¹, 京都大学化学研究所², 京都大学エネルギー理工学研究所³,

摂南大学⁴,大阪大学工学研究科⁵

^oYohei Tanaka¹, Chikai Hosokawa¹, Masaki Hashida^{1,2}, Heishun Zen³, Takeshi Nagashima⁴,

Norimasa Ozaki⁵, Shunsuke Inoue^{1,2}, Shuji Sakabe^{1,2}

GSS, Kyoto Univ.¹, ICR, Kyoto Univ.², IAE, Kyoto Univ.³, ICR, Setsunan Univ.⁴, GSE, Osaka Univ.⁵

E-mail: ytanaka@laser.kuicr.kyoto-u.ac.jp

1. 背景

アブレーション閾値近傍のフルーエンスで短 パルスレーザーを複数回照射することにより、レ ーザーの波長 λ よりも小さな周期間隔 Λ を持つ微 細周期構造(LIPSS)が材料表面に自己形成され ることが知られている⁽¹⁾。特に、 $\Lambda \ll \lambda$ であるよ うな LIPSS は微細 LIPSS と呼ばれ、レーザー光 の回折限界よりも微細な加工の手法として注目 されているが、その形成機構はいまだに明らかに されていない。

本研究ではLIPSS形成過程のその場観察を最終 目標としている。今回はその予備実験として、可 視光レーザーでプローブ可能な周期間隔の LIPSSを形成するため、中赤外の自由電子レーザ ー(FEL)を使用した実験を行った。

2. 実験

光源として、京都大学エネルギー理工学研究所 のKU-FELを使用した。KU-FELのパルスは2Hz で繰り返されるパルス幅2µs (FWHM)のマクロ パルス中に、2,856MHzで繰り返されるパルス幅 500fs (FWHM)のミクロパルスが含まれ、エネ ルギーの安定度は約10%である⁽²⁾。ピーク波長 $\lambda_{FEL} \approx 11.4 \mu m$ とし、ビーム径14mm (FWe⁻²M) のビームを焦点距離50mmのZnSeレンズで 72 μ m (FWe⁻²M)に集光し、標的に入射角度0°で 照射した。1マクロパルスあたりの照射エネルギ - E_{macro} は10 μ J~2mJ、照射マクロパルス数 N_{macro} は1~200回の範囲で変化させた。標的として、事 前のFEL照射実験でLIPSSが形成できたSiと

図 1 Si表面に形成された LIPSS (*N*_{macro}=1pulse) 照射エネルギーは *E*_{macro}=237µJ (a), *E*_{macro}=323µJ (b)

形成/融解閾値とバン	ドギャッ	・プ、融点	、熱伝導
材料	Ge	Si	SiC-4H
LIPSS 形成閾値 FLIPSS [J/cm ²]	6.9	12.2	24.6
融解閾値 F _{melt} [J/cm ²]	7.8	12.8	<56
バンドギャップ [eV]	0.66	1.1	3.2
融点 [K]	1,210	1,683	3,003
熱伝導率[W/(m・K)]	60	150	500

表1 LIPSS が形成された半導体における LIPSS

比較するため、今回は8種類の半導体を使用した。 3. 結果

照射した材料のうち、Ge, Si, SiC-4Hに LIPSS が形成された。LIPSS の方向は FEL の偏光方向 と平行であったが、SiC-4H での実験において照 射エネルギーが融解閾値 F_{melt} よりも十分大きい と考えられる場合、偏光と垂直な方向に $\Lambda \sim \lambda_{FEL}$ のLIPSS が形成された。

非熱的な過程と考えられているアブレーショ ンの閾値⁽³⁾と同様に、LIPSS 形成閾値 F_{LIPSS} はバ ンドギャップと相関があることがわかった。また、 複数の材料における LIPSS 形成の可否を比較し た結果、LIPSS が形成されるためには、材料固有 の $F_{LIPSS} と F_{melt}$ が $F_{LIPSS} < F_{melt}$ を満たす必要がある ことがわかった。

参考文献

 M. Hashida, et al, J. Laser Micro/Nano Eng., 9 (2014) 234-237
H. Zen et al, International Particle Accelerator Conference, Dresden, Germany, TUPRI077, pp.1745-1747 (2014)
L. Gallais et al, Appl. Opt. 53(2014) A186-A196.

謝辞

本研究の一部は、H30-R1 年度文部科学省光・量子飛躍フラッ グシッププログラム (Q-LEAP) JPMXS0118070187、京都大 学エネルギー理工学研究所ゼロエミッションエネルギー研究 拠点(課題番号 ZE31B-27)、天田財団重点研究開発助成(課 題番号 AF-2018203-A3)、NIFS 共同研究(NIFS17KNTS053) の研究助成により行われた。