廃炉モニタへの搭載を目指した新規赤色発光シンチレータの開発と光フ ァイバー読み出しガンマ線検出試験

Development of a novel red-emitting iodide scintillator and gamma-ray detection using an optical fiber

東北大金研¹,東北大 NICHe²,日本原子力研究開発機構³,三菱電機(株)⁴, 京都大⁵、(株) C&A⁶、チェコ物理研⁷

^O(DC)小玉 翔平¹, 黒澤 俊介², 森下 祐樹³, 宇佐美 博士³, 鳥居 建男³, 林 真照⁴, 東 哲史⁴, 笹野 理⁴, 田中 浩基⁵, 山路 晃広¹, 吉野 将生¹, 豊田 智史², 佐藤 浩樹², 大橋 雄二², 鎌田 圭^{2,6}, 横田 有為², Robert Král⁷, Jan Pejchal⁷, Martin Nikl⁷, 吉川彰^{1,2,6}

IMR Tohoku Univ.¹, NICHe Tohoku Univ.², Japan Atomic Energy Agency³, Mitsubishi Electric Corporation⁴, Kyoto Univ.⁵, C&A Corporation⁶, CAS Phys⁷ ^oS. Kodama¹, S. Kurosawa^{1,2}, Y. Morishita³, H. Usami³, T. Torii³, M. Hayashi⁴, T. Azuma⁴, O. Sasano⁴, H. Tanaka⁵, A. Yamaji¹, M. Yoshino¹, S. Toyoda², H. Sato², Y. Ohashi², K. Kamada^{2,6}, Y. Yokota², R. Král⁷, J. Pejchal⁷, M. Nikl⁷, and A. Yoshikawa^{1,2,6} E-mail: s_kodama@imr.tohoku.ac.jp

福島第一原子力発電所の廃炉に向け、炉内部 を把握し適切な廃炉計画を立案することが必 要となる。そこで、日本原子力研究開発機構で は内部観察のための長尺光ファイバーとシン チレータを利用した放射線モニタの開発を行 っている[1]。この遠隔放射線モニタの速やかな 実用化のため、われわれは材料開発から検出器 試作まで一貫した研究を行っている。光ファイ バー中の伝送損失が小さい赤色~近赤外で発 光する材料は、ルビー(Cr:α-Al₂O₃)など限ら れた材料しかなかったが、新たに新規ヨウ化物 シンチレータ Cs₂HfI₆(発光波長 700 nm)を開 発し、さらに 20m の光ファイバーでガンマ線 励起発光を読み出す動作試験に成功している ^[2]。ただし、伝送損失はより長波長帯 (1,000 nm 付近) で最少となるため、より低損失で測定で きるよう、Cs₂HfI₆よりも長波長で発光するシ ンチレータの開発にも取り組んだ。本講演では、 Cs₂HfI₆より長波長で発光する新規材料である Rb₂HfI₆(RHI)の単結晶育成と発光特性、および ⁶⁰Co ガンマ線源で励起した際の発光を 20 m 光 ファイバーで読み出したガンマ線検出試験の 結果を報告する。

垂直ブリッジマン法により RHI 単結晶を育 成し、試験片を作製した。X 線励起下でのスペ クトル測定から、RHI は約 725 nm にピークを 持つブロードな発光を示すことが分かった。浜 松ホトニクス株式会社製 Si アバランシェ・フ ォトダイオード S8644-1010 を使用し、¹³⁷Cs ガ ンマ線源で励起した際の波高値スペクトル測 定より、RHI の発光量は~40,000 photons/MeV、 エネルギー分解能 (FWHM@662 keV) は~7.4% と算出された。 RHI は潮解を防ぐため光学セメントに埋め 込み、京都大学複合原子力科学研究所のコバル ト 60 ガンマ線照射装置を使用してガンマ線検 出試験を行った。発光は 20 m 純粋石英光ファ イバーを通し、フォトダイオードおよび CCD 分光器で読み出し、ルビーとの比較を行い (Figure 1)、十分な感度を持つことが分かった。 また、実用を想定した 12 時間の連続照射を行 ったところ、ルビーでは 1 時間以上の長残光が 見られ正確な線量情報を迅速に得られないこ とが分かった。一方、RHI は残光がなく線量測 定の時間応答性に優れ、実際の原子炉内部調査 に適用可能と期待できる新規シンチレータの 開発に成功した。

Figure 1. Scintillation signal of RHI and ruby as a function of dose read with a photo diode and 20-m optical fiber

参考文献

[1] 東京電力, トピックス福島 Vol.25, 2015

[2] 第66回 応用物理学会春季学術講演会, 2019