大気圧ミスト CVD による AIOx 薄膜作製時における水の役割

The role of water in the synthesis of AlO_x thin films by a mist chemical vapor deposition

¹埼玉大理工研, ²東洋大バイオナノ研, <u>A. Rajib</u>¹, A. Kuddus¹, K. Enamul¹, 黒須俊治², 鵜飼智文
², 藤井泰彦², 徳田正秀², 花尻達郎², 石川良¹, 上野啓司¹, 白井肇¹

A. Rajib¹, A. Kuddus¹, K. Enamul¹, S. Kurosu², T. Ukai², M. Tokuda², Y. Fujii², T. Hanajiri², R. Ishikawa¹, K. Ueno¹, and H. Shirai¹

E-mail: rajib.apee.38@gmail.com

The role of water as an additive during the synthesis of aluminum oxide (AlO_x) thin films by mist chemical vapor deposition (mist CVD) was investigated. This study was based on deposition using aluminum acetylacetonate (Al(acac)₃) and methanol (MeOH), while also exposing some films to water or methanol mists after fabrication. Analysis by AFM and FTIR spectroscopy established that the AlO_x films fabricated from Al(acac)₃ using methanol as the sole exhibited a distorted Al(OH) network, including a high concentration of OH groups. The addition of water to the Al(acac)₃/MeOH precursor decreased the film deposition rate and also lead to marked reductions in both the surface roughness and -OH concentration. Exposing the Al(OH) films to water mist after synthesis resulted in etching together with the removal of -OH groups and decreases in surface roughness. Exposure to water induced no significant changes in the surface chemistry or morphology of AlO_x thin films deposited at a MeOH:water volume ratio of 7:3. However, FTIR spectra demonstrated that exposing these AlO_x films to a MeOH mist promoted the formation of Al(OH)bonds. Figure 1 shows the schematic of the growth surface for the MeOH:water ratios of 10:0 and 7:3. The results of this work indicate that the incorporation of -OH groups into the AlO_x network generates both network distortion and inhomogeneity. It is also evident that water present during film growth removes -OH groups during the growth, resulting in the formation of a dense, uniform AlO_x network. The effect of the substrate bias on the AlO_x film properties will be also presented.

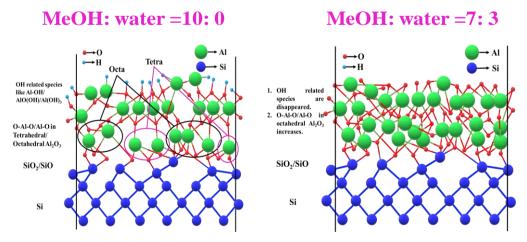


Fig. 1 Schematic of the growth surface of AlO_x by mist CVD with MeOH:water of 10:0 and 7:3.