逆格子空間マッピングを用いた Ge_{1-x}Sn_xメサ構造における熱膨張係数評価 Evaluation of Thermal Expansion Coefficient in Ge_{1-x}Sn_x Mesa Structure Using Reciprocal Space Mapping

明治大理工¹、学振特別研究員 DC²、高輝度光科学研究センター³、

再生可能エネルギー研究インスティテュート4

○髙橋祐樹¹、横川凌^{1,2}、吉岡和俊¹、小笠原凱¹、廣沢一郎³、須田耕平¹、小椋厚志^{1,4}

Meiji Univ.¹, JSPS Research Fellow DC², Japan Synchrotron Radiation Research Institute (JASRI)³,

Meiji Renewable Energy Lbs.⁴

^OY. Takahashi¹, R. Yokogawa^{1,2}, K. Yoshioka¹, G. Ogasawara¹, I. Hirosawa³, K. Suda¹, and A. Ogura^{1,4} E-mail: ce181044@meiji.ac.jp

背景と目的 : Ge_{1-x}Sn_xは Si や Ge に比べて 高い移動度と低い熱伝導率を持つため、次世代 の電子デバイスおよび熱電デバイス材料とし て期待されている。これまでに我々は、微細加 工した Ge_{1-x}Sn_x メサ構造に対し放射光 XRD 測 定による逆格子空間マッピングを用いた 3 軸 歪の評価を行い、異方的な形態を反映した格子 定数の異方性を報告した[1]。異方的な歪を有 する微細構造においては、熱膨張による影響も 異方性を示すと考えられるうえ、他材料におい て熱膨張と熱起電力に相関があることが報告 されていることから、熱膨張と歪の関係の正確 な評価が必要である[2]。よって本報告では、室 温から 300℃の温度範囲で逆格子空間マッピ ング測定を行い、異方性歪を有する Gel-xSnx メ サ構造において、熱による格子定数変化と熱膨 張係数の導出を試みた。

実験: 試料は Sn 濃度 3.2 及び 1.3%の Ge₁. _xSn_x 膜を(001)Ge 基板上に自作 MOCVD 装置を 用いてそれぞれ約 34 及び 45 nm、エピタキシ ャル成長させた[3]。成膜後、電子線リソグラフ ィ及びドライエッチングにより Fig. 1 に示すよ うな同一のメサ構造の集合体に加工した。メサ 構造における長辺方向の長さ(*L*)は 10 µm に固 定し、短辺方向の幅(*W*)を 0.2 及び 0.5 µm に変 化させた。なお、メサ構造における長辺は[110]、 短辺は[-110]に平行とした。

逆格子空間マッピングの測定は、SPring-8 の BL19B2 に設置された多軸回折装置を用いた。 試料温度は AntonPaar DHS1100 を用いて制御 し、30℃から 300℃の温度範囲で6 点測定した。 X 線のエネルギーは 10 keV とし、マッピング 測定は Sn 濃度 3.2%及び 1.3%において Ge の-337 回折近傍(面内短辺方向)の非対称面の測定 を行った。

結果: Fig. 2 は Sn 濃度 3.2%、W=0.5 μm の Ge_{1-x}Sn_x メサ構造の-337 回折近傍(短辺方向) の逆格子空間マッピング測定の結果より導出 した、温度と格子定数の関係である。Fig. 2 よ り、Ge_{1-x}Sn_x メサ構造においては面内短辺方向 と面直方向の格子定数に異方性が生じている ことが確認できる。Fig. 2 の結果から 30℃-300℃における温度変化による格子定数変化量 はメサ構造の面内短辺方向において 3.92×10^{-5} Å/℃、面直方向において 3.38×10^{-5} Å/℃と異な り、歪同様に熱膨張も異方性を有することが明 らかになった。これは、 $Ge_{1-x}Sn_x$ メサ構造にお いて、メサ構造と Ge 基板との格子定数差によ り、面内短辺方向に圧縮歪が生じることが原因 であると考えられる。

Fig. 1 SEM image of $\text{Ge}_{1-x}\text{Sn}_x$ mesa structures ($L = 10 \text{ }\mu\text{m}, W = 0.5 \text{ }\mu\text{m}$).

Fig. 2 Relationship between temperature and lattice parameter in $Ge_{1-x}Sn_x$ mesa structure.

[1] 高橋 他、2019 年春応物 (12a-M113-2).

[2] R. L. Magnusson et al., AIP Advance 7, 045002 (2017).

[3] K. Suda et al., ECS Trans. 64 (6) 697 (2014).