CdTe 太陽電池への放射線照射の影響

Effects of Radiation Irradiation on CdTe Thin-Film Solar Cells

木更津高専¹, RIKEN², JAXA³, JAEA⁴, 大阪府大⁵, 京都大⁶

○岡本 保 1, 福井 貴大 1, 戸澤 竜士 1, 小林 知洋 2, 今泉 充 3, 奥野 泰希 4, 秋吉 優史 5, 後藤 康仁 6

NIT, Kisarazu Coll. ¹, RIKEN ², JAXA ³, JAEA ⁴, Osaka Pref. Univ. ⁵, Kyoto Univ. ⁶,

°Tamotsu Okamoto¹, Takahiro Fukui¹, Ryuto Tozawa¹, Tomohiro Kobayashi²,

Mitsuru Imaizumi³, Yasuki Okuno⁴, Masafumi Akiyoshi⁵, Yasuhito Gotoh⁶

^{*}E-mail : okamoto@e.kisarazu.ac.jp

1. まえがき

東京電力福島第一原子力発電所(1F)の炉内お よび建屋内は事故の影響で非常に高い放射線環 境となっている。我々は、太陽電池素子をセンサ とした線量測定技術を基盤とした高線量放射線 計測システムを提案し、実用化に向けた開発を行 っている[1, 2]。1F 廃炉への応用では、高放射 線耐性、高温高湿耐性などが求められる。今回、 CdTe 太陽電池への中性子線などの放射線照射試 験を行ったので報告する。

2. 中性子線環境中での挙動

ガラス/ITO/CdS/CdTe/C/Ag という構造を有す るスーパーストレート型 CdTe 太陽電池に中性子 線照射試験を行った。理研の RANS (RIKEN Accelerator-driven compact Neutron Source) に より CdTe 太陽電池に中性子線を照射し、誘起電 流を計測した。中性子線は Be ターゲットに高速 の陽子を衝突させることにより発生させており、 中性子線と同時にガンマ線も発生している。陽子 電流は約 35 μ A とした。誘起電流の測定にはピコ アンメータ iDC12 (泰榮エンジニアリング㈱、最 小分解能 1pA) を用いた。

Fig.1 に観測された CdTe 太陽電池の誘起電流 と陽子電流を示す。この図より CdTe 太陽電池は、 RANS の動作環境下で発電していることが確認 できる。また、電流のリップルまでも、CdTe 太 陽電池の電流信号は応答していることがわかる。 Fig.2 に陽子電流を変動させた場合の CdTe 太陽 電池の誘起電流と陽子電流を示す。陽子線の電流 量に対して、CdTe 太陽電池の電流挙動も変化し ている。誘起電流の値と陽子電流はほぼ直線関係 にあることが確認できた。

陽子電流は約 35 μA の場合、中性子線の線量率 は 30 Gy/h 程度であるのに対し、ガンマ線の線量 率は 0.7 Gy/h 程度と見積もられた。CdTe 太陽電 池のガンマ線感度は 1 kGy/h 当たり約 100 nA/cm² 程度であることを考えると Fig.1 より見 積もられる CdTe 太陽電池の誘起電流は 0.1 nA/cm² 程度であり、誘起電流の大部分はガンマ線によるものと考えられる。高線量率の中性子環境下でも小ノイズでガンマ線検出ができることを示していると考えられる。

Fig.1 Induced current density of the CdTe solar cell and proton current under the neutron beam irradiation.

Fig.2 Induced current density of the CdTe solar cell and proton current under the fluctuated neutron beam irradiation.

謝辞 本研究の一部は「英知を結集した原子力科 学技術・人材育成推進事業」により実施した。

参考文献

- [1] 奥野他, 第66回春季応物, 9p-W933-10
- [2] 岡本他, 第80回秋季応物, 18p-E301-8