Mg イオン注入 p 型 GaN の超高圧アニール温度の検討

Temperature dependence of ultra-high-pressure annealing for Mg-ions implanted p-type

GaN

名大工 ¹、IMaSS²、 (株)アルバック半電研 ³、(株)サイオクス ⁴、UNIPRESS⁵
○(B4)晝川 十史 ¹、櫻井 秀樹 ^{1,2,3}、藤倉 序章 ⁴、堀田 昌宏 ^{1,2}、
M. Bockowski^{2,5}、乙木 洋平 ⁴、加地 徹 ²、須田 淳 ^{1,2}

Nagoya Univ.¹, Nagoya Univ. IMaSS², ULVAC ISET³, SCIOCS⁴, UNIPRESS⁵

<u>K. Hirukawa</u>¹, H. Sakurai^{1,2,3}, H. Fujikura⁴, M. Horita^{1,2} M. Bockowski^{2,5}, Y. Otoki,

T. Kachi² and J. Suda^{1,2}

E-mail: hirukawa.kazufumi@e.mbox.nagoya-u.ac.jp

【はじめに】より高性能な GaN パワーデバイスを実現する上で、電界緩和構造など任意領域への p型 伝導制御を可能とする Mg イオン注入(Mg-ions implantation: Mg-I/I)技術は重要である。我々はこれまで Mg-I/I 後に超高圧アニール(ultra-high-pressure annealing: UHPA)を適用した試料についてホール効果測定 を行い Mg アクセプタ形成の実証を報告してきた。 [1] 今回、ホール効果特性の UHPA アニール温度依存性を調べたので報告する。

【実験】n-GaN 自立基板上に、Si、C、O ともに濃度 10^{14} cm⁻³ 台中盤以下の高純度 Quartz-free-HVPE 成長アンドープ $GaN^{[2]}$ を用意し、濃度 1.0×10^{19} cm⁻³、深さ約 0.3 μ m の Box-profile で Mg イオン注入を行った。ウエハを分割した後、UHPA 条件を保護膜なしで高圧窒素(1GPa)下、アニール時間 5 分間を固定とし、温度を 1300、1400、1480 C に変化させたものを用意した。UHPA 後、熱拡散によって Mg プロファイルは変化し、Mg 濃度 $2.7\sim3.0\times10^{18}$ cm⁻³、深さ約 1 μ m に再分布していることを SIMS によって確認している。このプロセスを経たサンプルについてホール素子を作製し、175 K ~550 K の温度範囲でAC 磁場ホール効果測定を行った。

【結果と考察】正孔キャリア濃度(図 1(b))と正孔移動度の温度特性(図 1(c))を以下に示す。I-V 測定で UHPA1400 $^{\circ}$ 、1480 $^{\circ}$ Cの素子は 0.1 $^{\circ}$ 印加時 1 nA 以上であったが、1300 $^{\circ}$ Cの素子は 0.1 $^{\circ}$ V 印加時 $^{\circ}$ ノベルであり、70 $^{\circ}$ V 印加でも 10 nA 未満といった高抵抗の特性であったためホール効果測定はできなかった。一方、1400 $^{\circ}$ と 1480 $^{\circ}$ Cの素子は明確な $^{\circ}$ 型伝導特性を示した。またキャリア統計と電荷中性条件の式から解析を行った結果、1400 $^{\circ}$ と 1480 $^{\circ}$ Cにおける Mg アクセプタ活性化率($N_A/[Mg]$)はいずれもほぼ 100%、補償率(N_D/N_A)はそれぞれ 9%、7.4%と見積もられた。UHPA1300 $^{\circ}$ Cではアニール効果が不十分と考えられ、明確な $^{\circ}$ 型化のためには 1300 $^{\circ}$ C~1400 $^{\circ}$ Cの間の温度以上が必要である。

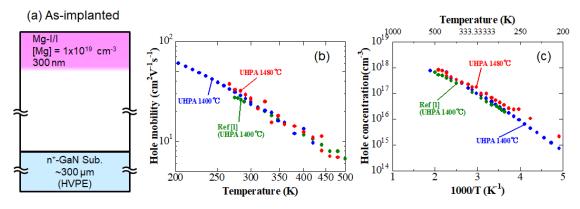


図 1(a)As-implanted 断面図, (b)正孔濃度の温度依存性、(c)正孔移動度の温度依存性 【謝辞】本研究の一部は、文部科学省「省エネルギー社会の実現に資する次世代半導体研究開発」の委託を受けたものです。また研究の一部は the Polish National Science Centre (NCN) のプロジェクト No 2018/29/B/ST5/00338 の助成を受けて行われたものです。[1] H. Sakurai et al., Appl. Phys. Lett. 115, 142104 (2019) [2] H. Fujikura et al., Jpn. J. Appl. Phys. 56, 085503 (2017)