RF スパッタ法を用いた High-k ゲート絶縁膜の作製と評価

Fabrication and Characterization of High-k Gate Insulating Films by RF-Sputtering Method

○手塚 大輝, 成澤 謙真, 内山 潔* 鶴岡工業高等専門学校

^oDaiki Tezuka, Kenshin Narisawa, and Kiyoshi Uchiyama^{*} National Institute of Technology, Tsuruoka College ^{*}E-mail: uchiyama@tsuruoka-nct.ac.jp

1.はじめに

近年、情報メディアの発展に伴いスマートフ オン、タブレット端末に搭載される FPD (Flat Panel Display)において高精細化、省電力化が求め られている。この FPD の画素を制御する素子と して薄膜トランジスタ(Thin Film Transistor: TFT) が用いられている。これまで、TFT の絶縁層材料 として SiO₂ が主流であったが、高精細化、省電 力化を高い水準で確立することは困難となりつ つある^[1]。そこで、絶縁層を従来材料の SiO₂ (比 誘電率 3.9)を超える比誘電率を持つ材料(High-k 材料)に置き換えることで、微細化や低電圧駆動 が可能となり、省電力化など高性能なディスプレ イの実現が期待される^[2]。

本研究では、高い比誘電率を持つ酸化物である SrNb₂O₆ (SNB)及び BaTa₂O₆ (BTA)に着目し、ゲー ト絶縁膜用の観点からその電気特性の評価を行 った。

2.実験方法

Pt/Ti/SiO₂/Si 基板上に RF マグネトロンスパッ タリング法を用いて SNB 及び BTA を成膜した。 成膜条件は Ar:O₂=3.0:3.0 sccm、出力 80 W、圧力 0.1 Pa とし、基板温度を 100-500 °Cで変化させた。 その後、DC スパッタ装置により、半径 178 μm の Pt 電極を形成した。

結晶性評価は X 線回折 (X-ray Diffraction: XRD)法を用いた。一方、電気特性評価としては リーク電流測定及び静電容量の測定を行った。リ ーク電流測定の測定範囲は 0-15 V、静電容量の測 定範囲は 0.1-100 kHz とした。

3.実験結果及び考察

Fig.1 に SNB 及び BTA 薄膜の XRD 測定結果 を示す。いずれの基板温度でも、SNB、BTA 由来 のピークが観測されず、作製した薄膜はアモルフ ァスであると言える。静電容量の測定結果より、 SNB では 50.2、BTA では 41.5 の高い比誘電率が 得られた。

Fig.2 にリーク電流測定の結果を示す。基板温度にかかわらず 10⁻⁶ A/cm²以下の高い絶縁性を示した。この結果より、ゲート絶縁膜の低リーク化

には SNB かつ低温成膜が有利であると言える。

この結果より、ゲート絶縁膜を SiO₂ から SNB 又は BTA に置き換えることで、十分な絶縁性を 保ちながら、SiO₂を極薄膜化した場合と同様の効 果が得られる。

Fig.1. XRD patterns of BTA and SNB deposited at different temperatures

Fig.2. Results of leak current property of BTA and SNB deposited at different temperatures

4.まとめ

SNB 及び BTA 薄膜は、高い絶縁性と高い比誘 電率を実現できることを示した。今後、これらの 絶縁膜を用いて TFT を作製し、その電気特性の 評価を行う予定である。

謝辞

本研究は、鶴岡高専技術振興会の助成のもと行 われました。ここに感謝いたします。

参考文献

- [1] K. Nomura et. al, Jpn. J. Appl. Phys. 45, (2006) 4303
- [2] H. Yamazaki et al., ECS J. Solid State Sci. Technol., 3, (2014) Q20.