Phase Formation and Crystallinity of Pr₂Ir₂O₇ Thin Films ISSP, Univ. of Tokyo, °(M1) Xianming Yu, Mikk Lippmaa E-mail: hinsyu@issp.u-tokyo.ac.jp

Pr₂Ir₂O₇ is known to have many intriguing physical properties, including a spin ice state and lack of long-range magnetic order at low temperatures. Quadratic band touching observed in Pr₂Ir₂O₇ bulk crystals ^[1] has been suggested to enable the formation of a topological insulator phase or a Weyl-semimetal phase if a corresponding symmetry is broken by lattice distortion, which is difficult to achieve in bulk crystals. Thus, we study PLD growth of Pr₂Ir₂O₇ films with the aim of obtaining stoichiometric surfaces that are required for, e.g., ARPES measurement.

Films with different compositions were grown on YSZ (111) substrates. Typical x-ray diffraction patterns of the films are shown in Figure 1. We find that the $Pr_2Ir_2O_7$ phase can be deposited directly by PLD at a low oxygen partial pressure (0.3 mTorr) and high temperature (1000°C) conditions (Fig.1(c)). However, competition between oxidation of praseodymium and formation of the pyrochlore structure leads to PrO_x secondary phases in the films. We investigated the praseodymium valences change, which is strongly related to the oxygen partial pressure under various deposition conditions (Fig. 2).

Fig. 1 XRD 2θ - θ scans of Pr₂Ir₂O₇ films grown at different oxygen pressures.

Fig. 2 XRD 2 θ - θ scans of PrO_x films grown at different oxygen pressures.

[1] T. Kondo, et al., Nature Commun., Vol. 6, p. 10042, 2015.