酸化濃縮法により作製した GOI を用いた引張りひずみ GOI nMOSFET Tensile strain GOI nMOSFET on GOI substrates fabricated by Ge condensation 東大院工, K. -W. Jo, C. -M. Lim, トープラサートポン・カシディット, 竹中充, ⁰高木信ー Univ. Tokyo, K.-W. Jo, C.-M. Lim, Kasidit Toprasertpong, Mitsuru Takenaka, [°]Shinichi Takagi E-mail: takagi@ee.t.u-tokyo.ac.jp

【背景】酸化濃縮による GOI 基板は、高い圧縮ひずみを持つことから、pMOSFET の性能向上に役立つ[1,2]が、同じ基板で CMOS を実現するためには、結晶性を劣化させることなく、圧縮ひずみを引張りひずみに変換することが必要である。本研究では、濃縮後に比較的低温の追加酸化を行うことにより、結晶欠陥を生成させることなく、引張りひずみを導入することに成功し、nMOSFET の電子移動度を向上できることを見出した。更に、この引張りひずみGOI 構造の薄膜化により、nMOSFET の顕著な電子移動度増大を観測したので報告する[3]。

【酸化濃縮プロセス】10nmの(100)SOI 基板上 に 60nmの Sio.75Geo.25 エピ層を形成した構造に 対して、Fig.1(a)の酸化濃縮を行った。ここで GOI まで濃縮した後、850℃での追加酸化濃縮 を行った。この結果、Fig.1(b)に示すように、 酸化時間と共に、圧縮ひずみが緩和しその後、 引張りひずみが導入されることを観測した。酸 化時間とひずみ量の関係を Fig.2 に示す。最適 な酸化時間によって、0.5%程度の引張りひず みを導入できることが分かる。この GOI 基板 上に、Al/W/Al₂O₃ ゲートスタックをもつ GOI nMOSFETを作製して、その電気特性を調べた。

【素子特性結果と考察】Fig.2(b),(c)に異なるひ ずみ量をもつ GOI nMOSFET の Id-Vg特性と電 子移動度を示す。追加酸化で Ioffが変わらない ことは圧縮ひずみ緩和の起源が欠陥生成では ないことを示唆している。引張りひずみの導入

Fig. 1(a) Ge condensation process flow and the recipe and (b) Raman spectra of the Ge-Ge peak

Fig. 2(a) Strain change as function of oxidation/annealing time (b) $\rm I_{d}\text{-}V_g$ and (c) effective electron mobility-Ns of GOI n-MOSFETs with tensile strain, controlled by oxidation time

で、電子移動度が2倍以上向上する事が分かる。

極薄膜領域での移動度の挙動を調べるため、 引張りひずみ GOI 基板をプラズマ酸化による デジタルエッチング[4]により薄膜化した。 Fig.3 に GOI 膜厚を変えた nMOSFET の電子移 動度の N_s依存性を示す。2.5nm までの薄膜化 で電子移動度が大幅に向上し、ピーク値で777 cm²/Vs の値が得られる。ここで、ひずみ量は 2.5nm まで維持され、それ以下の膜厚で急激に 緩和する。Fig.4に移動度のGOI 膜厚依存性と ベンチマーク結果を示す。引張りひずみの導入 に加え、GOI 薄膜化により移動度が大きく増大 しており、反転層電子の、L 点からム点2重縮 退バレーへの遷移[8]がその起源と考えられる。 【まとめ】酸化濃縮後の 850 ℃の追加酸化に より、GOIの圧縮ひずみを 0.5%程度の引張り ひずみに変調できる。このひずみと GOI 薄膜 化により、2.5 nmの膜厚の nMOSFET において、 777 cm²/Vs の電子移動度を実現した。

【謝辞】本研究は、科学研究費 19K15021 及び JST CREST JPMJCR1332 の支援により実施した。

【参考文献】[1] W.-K. Kim et al, VLSI Symp., T124 (2017) [2] K.-W. Jo *et al.*, APL **114**, 062101 (2019) [3] K.-W. Jo *et al.*, IEDM, 673 (2019) [4] X. Yu *et al.*, IEDM, 20 (2015) [5] C. H. Lee et al., APL **102**, 232107 (2013) [6] W. H. Chang *et al.*, VLSI symp., T192 (2017) [7] W.-K. Kim *et al.*, TED **51**, 3379 (2014) [8] W. H. Chang *et al.*, TED **64**, 4615 (2017)

Fig. 3 Electron mobility as function Ns for ETB GOI n-MOSFETs in the GOI thickness ranging (a) from 15 to 2.5 nm and (b) for 2.5 nm to 2.1 nm

Fig. 4. (a) Summary of GOI thickness dependence of electron mobility and (b) benchmark of effective hole mobility of GOI nMOSFETs as a function of the GOI thickness