in situ 赤外分光測定による Na_xCo[Fe(CN)₆]0.90 及び Na_xMn[Fe(CN)₆]0.83 の 酸化還元反応

in situ IR measurements of Na_xCo[Fe(CN)6]0.90 and Na_xMn[Fe(CN)6]0.83 in the redox process

筑波大数物科¹, 筑波大数物系², 筑波大 TREMS³ 〇</sup>丹羽秀治¹⁻³, 守屋 利昭¹, 守友浩¹⁻³

Grad. Sch. Pure and Appl. Sci., Univ. Tsukuba¹, Fac. Pure and Appl. Sci., Univ. Tsukuba²,

TREMS, Univ. Tsukuba³, ^oHideharu Niwa¹⁻³, Toshiaki Moriya¹, Yutaka Moritomo¹⁻³

E-mail: niwa.hideharu.ga@u.tsukuba.ac.jp

プルシャンブルー類似体(PBA)は遷移金属がシアノ基で架橋された三次元的な構造をもつ配位 高分子錯体で、アルカリ金属を可逆的にインターカレーションできるため、二次電池正極材料と して期待されている。X線吸収分光法は、二次電池材料の酸化還元プロセス、特に、酸化還元サ イトの同定に対する強力な実験手法である[1]。本研究では、より簡便な赤外吸収分光法でPBAの 酸化還元サイトの同定を試みる。PBAのCN伸縮モードは、[Fe(CN)₆]⁴では2065 cm⁻¹から2135 cm⁻¹ の領域に、[Fe(CN)₆]³⁻では2145 cm⁻¹から2205 cm⁻¹の領域に出現することが知られている[2]。

膜厚約 1µm の電極 Na_xCo[Fe(CN)₆]_{0.90} (NCF90)、 Na_xMn[Fe(CN)₆]_{0.83} (NMF83)、Na_xCo[Fe(CN)₆]_{0.71} (NCF71)を、電解析出法により ITO 付カバーガラス上に合成した。厚さ 25µm のセパレーターに 1M NaClO₄/炭酸プロピレン電解液を含浸させ、正極(NCF90 又は NMF83)と負極(NCF71)で挟んだ 構造の *in situ* セルを作成した。正極の面積 (0.04 cm²) に対して負極の面積 (2.13 cm²) を大きく し、NCF71 を電位定点とみなした。ポテンショスタットで正極を 1.1C レートで充電(酸化)させな がら、*in situ* 赤外吸収スペクトルを測定した。

図 1(a)にNCF90のNa濃度xを連続的に変化させて取得した *in situ* 赤外吸収スペクトルを示す。 Na 組成 x が 0 < x < 0.6 の領域(図 1(b)の高電位プラトー)では、[Fe(CN)₆]⁴の領域と[Fe(CN)₆]³の領域の両方に CN 伸縮振動モードが観測された。Na 濃度(x)の減少に伴い、[Fe(CN)₆]³の領域のモードの強度が増大した。これにより、高電位プラトーの酸化還元サイトは Fe と同定された。他方、

参考文献

M. Takachi *et al.*, Jpn. J. Appl. Phys. **52**, 090202 (2013).
S. Goberna-Ferrón, *et al.*, ACS Catal. **4**, 1637 (2014).

図 1. Na_xCo[Fe(CN)₆]_{0.9}の(a) *in situ* 赤 外吸収スペクトル及び(b)充電曲線。