Nd 置換した Sm(O,F)BiS2 超伝導体の単結晶の育成

Single crystal growth of Nd substituted Sm(O,F)BiS₂ superconductors 山梨大院¹

^O(M1)木南 幸希¹, (M2)花田 祐二¹, 長尾 雅則¹, 丸山 祐樹¹, 綿打 敏司¹, 田中 功¹ Univ. of Yamanashi¹

Koki Kinami¹, Yuji Hanada¹, Masanori Nagao¹, Yuki Maruyama¹, Satoshi Watauchi¹, Isao Tanaka¹ E-mail: <u>G19TA017@yamanashi.ac.jp</u>

I. 序論

2012 年に BiS₂層を超伝導層とする硫化ビスマス系超伝導体 $R(O,F)BiS_2$ が発見された[1]. これ は R サイトへの多様な元素置換が可能であり,数年のうちに R=La, Ce, Pr, Nd において単結晶の 育成が報告され, R サイトのイオン半径が小さくなるほど,また,O サイトへの F 置換量が増加す るほど,超伝導転移温度(T_c)が高くなる傾向にあることが示された[2].また, R=Smの単結晶にお いても超伝導が報告され, T_c は R=Nd の 5.3 K に次ぐ 4.8 K を示した[3].本研究では, T_c の向上を 目指して Nd を Sm サイトに置換した(Sm,Nd)(O,F)BiS₂単結晶の育成を試みた.また, Nd および F の置換量を変化させた際の c 軸格子定数や T_c について調べ,それらの関係について考察した.

Ⅱ. 実験方法

(Sm,Nd)(O,F)BiS₂の原料として Sm₂S₃, Nd₂S₃, Bi₂O₃, BiF₃, Bi, Bi₂S₃ を Sm_{1-y}Nd_yO_{1-x}F_xBiS₂ (F : *x*=0.3-0.7, Nd : *y*=0.1-0.9)の仕込み組成で合計 0.8 g になるよう秤量し, この原料に KI-KCl(KI : KCl=3 mol : 2 mol=3.85 g : 1.15 g)フラックスを加え, 乾式混合し, 石英管に真空封入した. これを 700 ℃ で 10 時間保持後, 0.5 ℃/h で 600 ℃まで徐冷し, 単結晶育成を行った. 得られた結晶を走査電子 顕微鏡(SEM)で観察, エネルギー分散 X 線分光(EDS)および電子線プローブマイクロアナライザ ー(EPMA)により組成分析, X 線回折(XRD)による結晶構造の評価を行った. 超伝導特性について は, *T*_c を直流四端子法による電気抵抗率測定によって評価を行い, 超伝導異方性パラメーターγ_s を上部臨界磁場 *H*_{c2}の異方性および有効質量モデルから評価した[4].

Ⅲ. 実験結果

Fig.1 に示すように、大きさ 0.2 mm, 厚さ 20 µm 程度の(Sm,Nd)(O,F)BiS₂単結晶の育成に成功した. 組成分析の結果,各仕込み組成から育成した単結晶中の Nd 濃度は,概ね仕込み組成(y)と一致し、Nd 置換量の制御は容易であることがわかった.一方、F 置換量については現在分析を進めている. 得られた単結晶の Nd 置換量に対する T_c^{onset} および c 軸格子定数との関係を Fig.2 に示す. T_c^{onset} に着目すると得られた試料は、すべて 5.35-5.60 K の間にあることから、(Sm,Nd)(O,F)BiS₂ 系超伝導体の T_c の上限が 5.6 K 付近にあることが予測される.また、Nd 置換量 x=0.5 および 0.7 の試料において、c 軸格子定数の変化が小さいことから、F の固溶限界が 0.5 以下である可能性が示唆される.c 軸格子定数は、各 F 仕込み量(x)において Nd の置換量に依らず概ね一定となることがわかった.本講演ではこれらの試料における F 置換量や超伝導異方性についても述べる予定である.

Fig.1. Typical SEM image of (Sm,Nd)(O,F)BiS₂ single crystal.

References

- [1] Y. Mizuguchi et al., J. Phys. Soc. Jpn., 81 (2012) 114725.
- [2] M. Nagao, Nov. Supercond. Mater., 1 (2015) 64-74.
- [3] K. Kinami et al., Cryst. Groeth Des., 19 (2019) 6136-6140.
- [4] G. Blatter et al., Phys. Rev. Lett. 68 (1992) 875.

Fig.2.The dependence of T_c^{onset} & *c*-axis on analytical Nd composition *y*'.