静脈撮影のための AIRR による空中ガイド照明の視野角の設計

Designing Viewing Angle of Aerial Guiding Illumination with AIRR for Vein Imaging 宇都宮大¹, JST, ACCEL² O(B) 佐事 郁弥¹, 山本 裕紹^{1,2}

> Utsunomiya Univ. 1, JST, ACCEL. 2, °Ikuya Saji¹, Hirotsugu Yamamoto^{1,2} E-mail: hirotsugu@yamamotolab.science

1. はじめに

接触型の生体認証装置においては衛生問題や 指紋等の情報漏洩のリスク,スループットの低 下が問題である. 高スループットが求められる 場所では動く指を用いた静脈認証[1]が提案さ れている. 非接触で鮮明な静脈画像を取得する ためには、無拘束で撮影位置に手を誘導する工 夫が求められる. 本研究では, AIRR を用いた 空中ガイド照明光を提案する. ATM などに導 入する場合, 空中表示のための筐体の体積に制 約が生じる. 今回, 空中ガイド照明光学系のサ イズと視野角の関係について解析する.

2. 実験原理

本研究で提案する光学系は,撮像素子,ビー ムスプリッター(BS), 光源, 再帰反射シートで 構成される. 撮像素子として波長 350nm から 1100nm のスペクトル画像が撮影できるハイパ ースペクトルカメラ(エバ・ジャパン, NH-7), 光源として撮像素子で測定可能なスペクトル をすべて含むソーラーシミュレーター光源(朝 日分光, HAL-320)を使用した. Fig. 1 は提案光 学系の原理図である. 光源からの光は BS によ って反射光と透過光に分かれる. 光の一部は再 帰反射シートに入射する. 再帰反射した光は光 源とBS に対して面対称の位置に集光し結像す る. この時、撮像素子のピントを空中ガイド照 明の位置に調節する. 撮影した静脈画像および 空中ガイドを Fig.2 に示す.

3. 視野角の解析

空中ガイド光の位置に手を置く場合, 横方向 から観察することになるため, 視野の境界は BS の端になる. そこで, 提案光学系において, Beam Splitter(BS)のサイズ(Y)および光源と BS の距離(X)に対する視野角を検討する. Fig. 3 に 示す幾何配置から, 中央の光源の視野角は

$$\theta_1 = \tan^{-1} \frac{2X}{Y}$$

 $\theta_1 = \tan^{-1} \frac{2X}{Y}$ で表され,Fig.3 に示すプロトタイプにおいて, 視野角は±46°である.

さらに, 空中ガイド照明のガイド性能を高め るためには,空中像の両端が見えている必要が ある. 空中像のサイズ(Z)も含めた視野角は

$$\theta_2 = \tan^{-1} \frac{Y - Z}{2X}$$

で得られる.幅10cmの空中像を表示する場合、

Fig.3 の光学系では ± 26 ° の視野角が得られた. 4. まとめ

本研究では自由空間における非接触での手 の静脈撮影のための AIRR を用いた空中ガイ ド照明を提案し、BS の大きさと位置で視野角 を調整できることを示した.

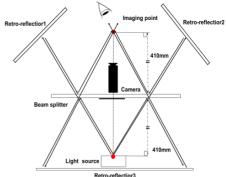


Fig. 1 Optical system to form aerial guiding illumination for non-contact imaging.

Fig.2 Aerial grip-shaped guiding illumination and a spectral image of vein in 825 nm.

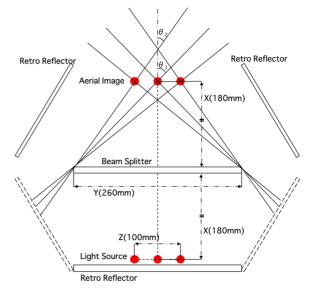


Fig.3 Geometry for viewing angle analysis. 参考文献

- [1] H. Suzuki, et al., Proc. OPJ2016, 31aES7(2016).
- [2] H. Yamamoto, et al., Opt. Exp. 22, 26919(2014).