Ti_xOy 薄膜の一軸加圧熱処理による固相エピタキシーと構造・物性評価

Solid-phase epitaxy, structural and property characterization of titanium oxide thin

films by uniaxial compressive annealing

東工大物質理工¹, 神奈川県産技総研²

°(M1)生田 貴大¹, 堀松 芳樹¹, 金子 智^{2,1}, 松田 晃史¹, 吉本 護¹

Tokyo Tech¹, KISTECH²

^oTakahiro Ikuta¹, Y. Horimatsu¹, S. Kaneko^{2, 1}, A. Matsuda¹, M. Yoshimoto¹

E-mail: ikuta.t.ac@m.titech.ac.jp

【はじめに】遷移金属酸化物である酸化チタン(Ti_xO_y)は、TiO₂や Ti₂O₃ さらには非化学量論組成で あるマグネリ相 Ti_nO_{2n-1}(n=4~9)など様々な酸化状態が存在し^[1]、その中でも最安定相 TiO₂は光学 材料や光触媒として用いられている。これに対して、TiO、Ti₂O₃やマグネリ相 Ti₄O₇ など還元型チ タン酸化物は、高温・強還元条件下のパルスレーザー堆積法(PLD)によるエピタキシャル成長、金 属ー絶縁体相転移や光誘起相転移が報告されている^[2,3]。しかし、TiO₂の高い熱力学的安定性から、 マグネリ相の酸素欠損型組成制御が難しく Ti_nO_{2n-1}(n=4~9)エピタキシャル薄膜の研究はまだ少な い。一方で、我々はこれまでに Ti_xO_y と同様に多くの非化学量論組成相をもつ酸化バナジウム系 (V_xO_y)への一軸加圧下熱処理(UCA; uniaxial compressive annealing)により、相選択的な固相エピタキ シーを報告した^[4]。このプロセスによる圧力で誘起される固相エピタキシーやトポタキシー現象 を用い、TiO_{2-a}非晶質薄膜を前駆体とし UCA することで、密度が高い還元型結晶相の薄膜合成が 期待できる^[5]。このエピタキシャル薄膜合成を介することで、酸素非化学量論組成 Ti_xO_yの結晶構 造、電気特性を制御する知見が得られる。本研究では、エピタキシャル Ti_xO_y薄膜の結晶相制御と その物性探索を目的として、α-Al₂O₃(0001)基板上における TiO-TiO₂ 間組成のエピタキシャル薄 膜合成と UCA および雰囲気制御アニーリングが結晶構造と電気特性に及ぼす影響を検討した。

【実験・結果】まず、KrF エキシマレーザー(波長 248 nm、 パルス幅 20 ns)と TiO_{2-δ} 焼結体ターゲットを用いた PLD 法により、α-Al₂O₃ (0001) 基板上に前駆体となる F Ti_xO_y薄膜を作製した。堆積条件は酸素圧を約 10⁻³ Pa、 基板温度を室温、レーザー強度を~1.5 J/cm²とした。続い て、得られた Ti_xO_y 薄膜に面直方位の一軸圧力(0-30 MPa)を印加して UCA を行った。UCA には熱ナノインプ S リント装置を用い、Ar ガスパージ後 20 hPa の真空中に おいて、400°C, 1hr の条件でアニールした。Fig.1 で示し た 10 MPa の UCA 後の XRD 測定では、Ti₂O₃の面直方 位の(001)配向を示す回折が得られ、また RHEED では面 内3回対称性を示す二種類のストリークが観測された ことから薄膜が固相エピタキーしたことが明らかにな った。Fig.2 で示した UCA 後の温度一電気抵抗率測定結 果では、半導体的挙動を示した。本講演では、UCA によ cio る固相結晶化の影響、物性評価についても報告する。

- [1] J. S. Andersson, Acta Chem. Scand. 11 (1957) 1641.
- [2] S.Ohkoshi et al., Nat. Chem., 2 (2010) 539-545.
- [3] K.Yoshimatsu et al., Sci. Rep. 2 (2017) 12544.
- [4] A.Matsuda et al., Appl. Surf. Sci., 480 (2019) 956-961.
- [5] N.E. Brese et al., Acta Cryst., 17 (1991) 413.

* α -Al₂O₃(0001) substrate

Fig.2 Temperature dependent resistivity of $Ti_2O_3(001)$ thin film after UCA at 400 $^\circ\!\mathrm{C}.$

Temperature [K]