遷移金属水素化物・窒化物の薄膜成長と物性評価

Thin-film growth and characterizations of transition-metal hydrides and nitrides 東工大物質理工学院¹, 元素戦略² ○大友 明¹,²

Tokyo Tech., Dept. Chem. Sci. Eng.¹, MCES², [○]A. Ohomo^{1,2} E-mail: aohtomo@apc.titech.ac.jp

近年,薄膜材料としての水素化物,窒化物,酸水素化物,酸窒化物の研究が進められている.水素化物は,高温超伝導やヒドリドイオン伝導の観点で注目されており,遷移金属酸窒化物は,主に可視光応答型光触媒への応用で注目されている.我々は,これまでパルスレーザ堆積法(PLD)を用いて, α -Al $_2$ O $_3$ (0001)基板上への IV 族水素化物(TiH $_2$, ZrH $_2$, HfH $_2$),IV 族窒化物(TiN, ZrN,HfN),Ti の酸窒化物や水窒化物,ならび MgO (100)基板上への CrN や SeN [1]の薄膜成長と物性評価に注力してきた.Table 1 に示す通り,これらの遷移金属化合物のほとんどは金属的性質を示す.本発表では,PLD による薄膜成長プロセスについて述べた後,いくつかの顕著な物性について紹介する.

【謝辞】本研究は、吉松公平講師、相馬拓人助教、上田茂典博士、大橋直樹博士ならびに東工大の学生(鈴木崇之、西暁登、水城淳、林遼一郎、横山竜、佐藤大知)との共同研究である。細野秀雄教授、神谷利夫教授、飯村壮史助教には遷移金属水素化物のTDS測定でご協力いただいた。 [1] 佐藤他、第67回応用物理学会春季学術講演会

Table 1. Bonding nature of hydrides and nitrides.

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
LiH	BeH ₂	Metallic bonding Hydrides Covalent bonding									B ₂ H ₆	CH ₄	NH ₃	H ₂ O	HF	
NaH	MgH ₂	Trydrides obvious							AlH ₃	SiH ₄	PH ₃	H ₂ S	HCI			
КН	CaH ₂	ScH ₂	TiH ₂	VH VH ₂	CrH	Mn	Fe	Со	NiH	CuH	ZnH ₂	GaH ₃	GeH ₄	AsH ₃	H ₂ Se	HBr
RbH	SrH ₂	YH ₂ YH ₃	ZrH ₂	NbH NbH ₂	Мо	Tc	Ru	Rh	PdH	Ag	CdH ₂	InH InH ₃	SnH ₄	SbH ₃	TeH ₂	н
CsH	BaH ₂	Ln	HfH ₂	ТаН	W	Re	Os	lr	Pt	Au	HgH ₂	TIH TIH ₃	PbH ₄	BiH ₃	PoH ₂	At
Li ₃ N	Be ₃ N ₂	Ionic bonding Nitrides										BN	C ₃ N ₄	N ₂	NO ₂	F
Na ₃ N (NaN ₃)	Mg ₃ N ₂	lonic bonding Nitrides									AIN	Si ₃ N ₄	P ₃ N ₅	S ₂ N	NCI ₃	
(KN ₃)	Ca ₃ N ₂	ScN	TiN Ti ₂ N	VN	CrN Cr₂N	Mn ₄ N	Fe₄N	Co ₄ N	Ni ₄ N	Cu ₃ N	Zn ₃ N ₂	GaN	Ge ₃ N ₄	As	Se	Br
(RbN ₃)	Sr ₃ N ₂	YN	ZrN	NbN	MoN Mo ₂ N	TcN	Ru	Rh	Pd	Ag ₃ N	Cd	InN	Sn	Sb	Те	1
(CsN ₃)	Ba ₃ N ₂	LaN	HfN	TaN Ta ₃ N ₅	W ₂ N	Re ₂ N	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Р	At