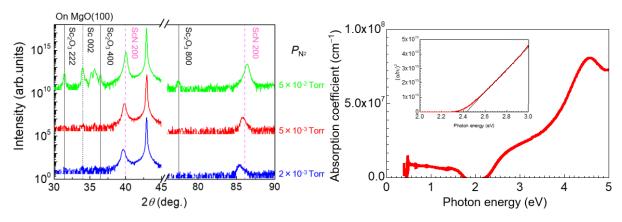
パルスレーザ堆積法による ScN 薄膜のエピタキシャル成長

Epitaxial growth of ScN thin films using pulsed-laser deposition


東工大物質理工学院 ¹,元素戦略 ², ^O佐藤 大知 ¹,横山 竜 ¹,相馬 拓人 ¹,大友 明 ^{1,2}
Tokyo Tech., Dept. Chem. Sci. Eng. ¹, MCES. ², OD. Sato ¹, R. Yokoyama ¹, T. Soma ¹, A. Ohtomo ^{1,2}
E-mail: sato.d.ag@m.titech.ac.jp

【はじめに】Ⅲ族窒化物である ScN は、立方晶系の新たな半導体材料として注目されている [1]. ScN のバンドギャップ (E_g) は $2\,eV$ 前後であり、通常は n 型伝導を示し、室温における移動度が $300\,em^2\,V^{-1}\,s^{-1}$ の薄膜が得られている。また、Mg ドープによる p 型伝導が実証されている [2]. 他 の遷移金属窒化物と同様に岩塩型構造をとり、混晶化や金属(例えば TiN)とのエピタキシャル 接合形成への展開が期待されている。しかしながら、良質な結晶を得る成長法は HVPE や MBE などに限られ、パスレーザ堆積 (PLD) 法による薄膜成長の報告例はない。我々は PLD 法を用いた ScN 薄膜のエピタキシャル成長に成功したので報告する。

【実験】Sc ターゲット (純度 3N) を用いて MgO (100)基板上に薄膜を作製した. 基板温度を 700 $^{\circ}$ C で一定とし、 N_2 ガスの分圧 (P_{N_2}) を変化させた. X 線回折 (XRD) により結晶構造を評価し、紫外可視近赤外分光法により E_g を見積もった.

【結果と考察】Fig. 1 に様々な P_{N_2} で成長した薄膜の対称面反射の XRD プロファイルを示す. 高い P_{N_2} で成長した薄膜では、Sc や Sc_2O_3 などの不純物相のピークが見られた. 一方で、低い P_{N_2} で成長した場合、不純物相のピークは消失した. 非対称面反射の面内回転プロファイルから、単相の ScN がエピタキシャル成長したことを明らかにした. Fig. 2 に単相の ScN 薄膜の光吸収スペクトルを示す. 2 eV 付近に基礎吸収端が確認され、Tauc プロット(Fig, 2, inset)から直接遷移の E_g は 2.42 eV と見積もられた. 発表では、電気特性についても報告する.

[1] B. Biswas et al., Phys. Rev. Mater. 3, 020301 (2019). [2] B. Saha et al., Appl. Phys. Lett. 110, 252104 (2017).

Fig. 1. Out-of-plane XRD profiles for films grown under various P_{N_2} . Vertical lines indicate reflections coming from ScN (red/broken), Sc₂O₃ (black/solid), and Sc (black/dotted), respectively.

Fig. 2. Optical absorption spectrum for the ScN film. A Tauc plot shown in the inset suggests direct transition.