Crystallographic Anisotropy in Physical Properties of Ta₃N₅ Epitaxial Thin Films Univ. of Tokyo¹, Hokkaido Univ.², Univ. of Tsukuba ^{3 O}Yannan Wang¹, Takuto Wakasugi¹, Yasushi Hirose¹, Yuji Masubuchi², Yuki Sugisawa³, Daiichiro Sekiba³, and Tetsuya Hasegawa¹

E-mail: yannan_wang@chem.s.u-tokyo.ac.jp

[Introduction] Hydrogen generation by photocatalytic overall water splitting has great potential in solving environmental problems resulted from the overuse of fossil fuels. Ta_3N_5 is a promising material that has nearly ideal bandgap (2.1eV) and band-edge positions for photocatalytic water splitting.¹ Because of its pseudo-brookite crystal structure (Fig. 1), Ta_3N_5 has been predicted to have large crystallographic anisotropy of physical properties such as band gap and carrier effective mass, which should affect its photocatalytic efficiency.² However, it was hard to verify these anisotropies experimentally because Ta_3N_5 has been synthesized only in polycrystalline and rod-like nanocrystalline forms so far.^{3, 4} In this study, we unprecedentedly synthesized epitaxial thin films of Ta_3N_5 and investigated crystallographic anisotropy in their physical properties.

[Experiments] Ta₃N₅ thin films were synthesized by solid phase epitaxy on LaAlO₃ (LAO) (110) and LSAT (110) substrates, as follows. First, amorphous Ta₃N₅ films with stoichiometric chemical composition were deposited by reactive rf magnetron sputtering using a ceramic TaN target and mixture of Ar and N₂ gas. Then, the amorphous films were heated under N₂ or NH₃ flow in a tubular furnace with temperatures (T_a) ranging from 500 to 800 °C. Crystallinity, chemical composition and optical property of the films were examined by X-ray diffraction (XRD), elastic recoil detection analysis, and UV-visible spectroscopy, respectively.

[Results] XRD measurements revealed that the films annealed under N₂ showed no XRD peaks from Ta₃N₅ while the amorphous films annealed under NH₃ flow epitaxially crystallized into (010)-oriented Ta₃N₅ at $T_a \ge 700$ °C (Fig. 2). Chemical composition of the epitaxial Ta₃N₅ films was almost stoichiometric (N/Ta = 1.63). From these results, we concluded that epitaxial thin films of Ta₃N₅ were obtained. Optical reflection spectra of the epitaxial Ta₃N₅ thin films evaluated with linearly polarized light showed clear anisotropy in absorption edge and obvious difference in film's color was observed (Fig. 3), which agreed well with theoretical prediction.² Physical properties of the epitaxial Ta₃N₅ thin films will be further discussed in the presentation.

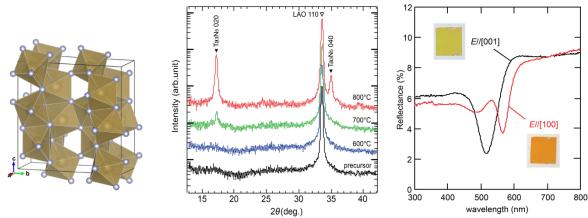


Fig. 1. Crystal structure of Ta_3N_5 .

Fig. 2. XRD patterns of the Ta₃N₅/LAO films annealed for 1 hour under NH₃ flow at various T_a .

Fig. 3. Polarized optical reflectance spectra and photographs of a Ta_3N_5 epitaxial thin film.

[Acknowledgement] This study was supported by KAKENHI 16H06438 and 16H06441 and Yamada Science Foundation.

[References] [1] K. Maeda et. al. J. Phys. Chem. Lett. 1, 2655 (2010), [2] J. Morbec et. al. Phys. Rev. B. 90, 155204 (2014), [3] Z. Wang et. al. Nature Catalysis. 1, 756 (2018), [4] L. Yuliati et. al. J. Mat. Chem. 20, 4295 (2010)