バルク型フォトニック結晶構造における 可視光領域トポロジカルエッジ導波路の設計と理論解析

Design and theoretical analysis of topological edge waveguide in a bulk type photonic crystal structure

上智大理エ¹, 上智大フォトニクスリサーチセンター² [。]森谷 祐太¹, ,阿部 洸希¹, 木下 堅太郎¹, 大江 優輝¹, 川崎 祐生¹, 伊藤 大智¹ 菊池 昭彦^{1,2}

Sophia Univ.¹, Sophia Photonics Research Center²,

°Yuta Moriya¹, Kouki Abe¹, Kentaro Kinoshita¹, Yuki Ooe¹, Yusei Kawasaki¹, Daichi Ito¹, Akihiko Kikuchi^{1,2}

E-mail: kikuchi@sophia.ac.jp

はじめに:フォトニック結晶(PhC)は、光デバイスの高性能化・高機能化に有用なデバイス技術であり、近年ハニ カム格子に配置した誘電体ロッドやホールにより光領域でのトポロジカルエッジ伝搬の理論予測[1]や実験的検 証[2]が報告されている。また、窒化物半導体系 PhC デバイスでは効率的に PhC 領域へ光を閉じ込める架橋メン ブレン型構造[3]が広く用いられるが、電流駆動システムの実現には困難を伴う。一方、我々は電流駆動 PhC デバ イス作製を目指して、屈折率導波構造と高アスペクト空孔により光を PhC 領域に集中させるバルク型構造の検 討を行なっている。これまでに、窒化ガリウム(GaN)の水素雰囲気下での熱分解反応を利用した低損傷極微細ナ ノ加工技術である HEATE 法[4, 5]を用いて、バルク型 PhC 構造に不可欠な高密度かつ高アスペクトな GaN ナノ ホールアレイが作製可能であることを報告した[6]。本研究では、GaN 系バルク型 PhC 構造における可視光領域 トポロジカルエッジ伝搬の実現に向けたデバイス構造設計と理論解析を行なった。

実験と結果:Fig. 1(b)や(c)に示すような6つの三角空孔からなる六角形クラスタを三角格子配列したフォトニック結晶導波路を設計した。積層構造は、空気(n=1.0)/GaN(n=2.4)/InGaN(n=2.6)/GaN/AlGaN(n=2.35)とし、GaN/InGaN/GaN 層を貫通する深さ1.3 µmの三角空孔 PhC を設定した。クラスタの周期をa=300 nm とし1辺 T=100 nmの正三角形をクラスタ中心に R=0.35a で隔離した配置(topological)、R=0.31a で隣接させた配置(trivial) を設計した。これらの2種のPhC 領域を接合させ90度曲げを伴う界面導波路を設計し、界面におけるトポロジカルエッジ伝搬状態について有限差分時間領域法(FDTD)による3D 導波シミュレーションを行った。

Fig.2、3 にトポロジカルエッジ導波路における導波シミュレーションの結果を示す。Fig.2 は波長 518 nm の光 導波の様子であり、活性層を想定した InGaN 層内を光が最低でも数µm以上の距離を伝搬した。多数の柱状空孔 により PhC 部の実効屈折率は大幅に低下しているにもかかわらず、下部 AlGaN 層への伝搬光の漏れ出しは十分 に抑制されており、バルク型 PhC 構造が少なくとも短距離では有用に機能することが確認された。また Fig.3 は トポロジカルエッジ導波路における波長の異なる光の伝搬の様子である。90 度曲げを伴う界面導波路において、 エッジ伝搬の特徴である一方向性、かつ散乱の少ない光伝搬がシミュレートされており、可視領域トポロジカル エッジ伝搬実現の可能性を示唆していると期待される。

謝辞:本研究は、JST CREST JPMJCR18T4、JSPS 科研費 JP17H02747、JP19K22147 の援助を受けて行われた。 参考文献: [1] Xiao Hu. et al., Phys. Rev. Lett., 114 (2015) 223901. [2] Barik, et al., New J. of Phys., 18.11 (2016)

113013. [3]M. Arita et al. APEX 5 (2012) 126502. [4] R. Kita et al. Jpn. J. Appl. Phys. **54** (2015) 046501. [5] K. Ogawa et al., Phys. Stat. Sol. A. **214** (2017) 1600613. [6]森谷 他, 第 80 回秋季応物術講演会(2019) 20a-E310-10.

Fig. 1 Scheme of topological edge waveguide (a), and magnified structures of topological (b) and trivial (c) PhCs.

Fig. 3 Electronic field intensities of a GaN based visible light topological edge waveguide simulated at different wavelengths.