高分解能ナノ NMR に向けたダイヤモンドへの NV センターと微小容器の一括形成

Self-align fabrication of nano-reservoirs with NV centers in diamond for high-resolution nano-NMR

早大理工¹, NIMS², 量研機構³, 群大⁴, 東北大⁵, 筑波大⁶ ^〇齋藤悠太^{1,*}, 石井 邑¹, 川勝一斗¹, 永岡希朗¹, 畑 雄貴¹, 中村洸介¹, 榎田尊昭¹, 徐 海州¹, 薗田隆弘¹, 立石哲也¹, 金久京太郎¹, 寺地徳之², 小野田忍³, 樋口泰成³⁴, 山田圭介³, 大島 武³, 品田高宏⁵, 川原田洋¹, 加田 渉⁴, 花泉 修⁵, 磯谷順一⁶, 谷井孝至¹

Waseda Univ.¹, NIMS², QST³, Gunma Univ.⁴, Tohoku Univ.⁵, Univ. of Tsukuba⁶ °Y. Saito^{1,*}, Y. Ishii¹, K. Kawakatsu¹, K. Nagaoka¹, Y. Hata¹, K. Nakamura¹, T. Enokida¹, H. Xu¹, T. Sonoda¹, T. Tatsuishi¹, K. Kanehisa¹, T. Teraji², S. Onoda³, T. Higuchi^{3, 4}, K. Yamada³, T. Ohshima³, T. Shinada⁵, H. Kawarada¹, W. Kada⁴, O. Hanaizumi⁵, J. Isoya⁶, T. Tanii¹

*E-mail: <u>saito@tanii.nano.waseda.ac.jp</u>

【研究背景】ダイヤモンド表面近傍の浅い窒素-原子空孔欠陥(NV センター)の電子スピンを量 子プローブとして溶液系の核磁気共鳴(NMR)計測を行うとき、標的分子の溶液中での熱運動に より、標的分子が NV センターの検出体積外に拡散することが、NMR 周波数分解能を低下させ る要因の1つとなる[1]。例えば、表面から深さ 10 nm に位置する単一 NV センターを NMR プ ローブとして用いるとき、その実効的な検出体積は NV センター直上に中心を持つ表面上の直径 約 10 nm の半球となる。しかしながら、ランダムな熱運動により標的分子が計測中に検出体積外 に拡散すると、NV センターと磁気的に結合している時間が実効的に短くなる。周波数分解能は この磁気的結合時間の逆数に比例するので、分子拡散が周波数分解能を低下させることになる。 この分子拡散の影響を除外するために、私たちは溶液サンプルを閉じ込めることのできるナノ構 造(微小容器)を、NV センターと合わせてダイヤモンド表面に形成することに着想した。今回、 NV センターを直下にもつ微小容器配列を試作したので、その結果について報告する。

【実験方法】Chemical Vapor Deposition により Ib(100)基板上に ¹²C (99.998%) 濃縮ダイヤモン ド薄膜を成膜した。電子線リソグラフィーにより、電子線レジストにナノホールと位置マークを 配列形成し、¹⁵N⁺イオン注入(10¹² cm⁻², 10 keV)とドライエッチング(ICP-RIE, O₂ ガス)を行 った。同一のレジストマスクを用いることで、自己整合的に微小容器の直下に窒素イオンを注入 できる。レジストを除去した後、熱処理(1000 °C, 2 h)を施すことにより NV センターを形成し た。表面形状を原子間力顕微鏡(AFM)で、NV センターの特性を共焦点レーザー走査型蛍光顕微 鏡(CFM)用いたパルス光検出型磁気共鳴(ODMR)法で評価した。

【実験結果】Fig. 1 に配列形成した微小容器の AFM 像を示す。ドライエッチングによって微小容 器配列と位置マークF が形成されている。Fig. 2 は同領域の CFM 像である。微小容器と位置マー クの直下に NV センターが形成されている。Fig. 3 は配列中の単一 NV センターの Hahn Echo 測 定結果の例である。コヒーレンス時間 31.88 µs を得た。これらの結果は、提案プロセスによって、 微小容器直下に自己整合的に NV センターを形成できること、および、その NV センターが NMR 計測に資するコヒーレンス時間を有することを示している。

なお、本研究は科研費(26246001, 26220903, 25289109, 15H03980, 17H02751, 16K14242, 18H03766)の助成を受けた。

[1] I. Schwartz, et al., Scientific Reports 9 6938 (2019).

[2] T. Staudacher, et al., Science 339, 561 (2013).

