Development of Ion Trap and Laser Cooling Apparatus for ⁴¹Ca⁺ Spectroscopy

東京大学¹ ^O(D) WELLS Stephen R.¹, 長谷川 秀一¹ Tokyo Univ.¹, ^oStephen R. Wells¹, Shuichi Hasegawa¹

E-mail: wells@lyman.q.t.u-tokyo.ac.jp

Introduction

⁴¹Ca is a cosmogenic radioisotope of calcium with long half-life (9.94 × 10⁴ years) and unusual decay pathway (EC to ⁴¹K, X-ray/Auger electron release with $E \le 3.3 \text{ eV}$). The long half-life makes it a prime candidate for radiometric dating past the carbon-14 range, and is also a cosmologically interesting isotope as a method of investigating stellar anomalies[1]. However, its extremely low natural abundance (~10⁻¹⁴ – 10⁻¹⁵ relative to ⁴⁰Ca) has prevented active use from becoming feasible. In addition, while data on the atomic structure of ⁴¹Ca I is available, the ⁴¹Ca II ion is under-reported, particularly in isotope shift and hyperfine structure data. Therefore, we are motivated to investigate these properties via the Dopplerbroadening minimized technique of trapped ion laser spectroscopy.

Methods and Preliminary Results

The ion trap is a linear quadrupole type trap (length, diameter = 10mm), with Ca ions produced through external liquid sample introduction into a modified (detector removed and replaced with ion guide introduction into external vacuum chamber) inductively coupled-mass spectroscopy (ICP-MS) Perkin-Elmer ELAN DRC II unit. The ions are mass-selected by the ICP-MS before being guided through a system of ion lenses to the trap region[2]. Ions are laser cooled by an all external cavity diode laser (ECDL) system, stabilized by digital fringe offset lock (DFOC) to a master ECDL itself stabilized to the Rb D2 line via sub-Doppler dichroic atomic vapour laser lock (SD-DAVLL)[3]. Spectroscopy is performed by frequency scanning one laser, holding the rest constant. An enriched sample (up to 10^{-6} ⁴⁰Ca relative) is used to ensure ⁴¹Ca concentrations are adequate for the experiment. Experiments on ⁴³Ca trapping using similar or lower concentrations are performed as a confirmation of the system capability for ⁴¹Ca.

Conclusion

The current status of an ICP-MS sample introduced ion trap system for the first trapping and spectroscopy of the trace isotope ⁴¹Ca is described. Progress in trapping ⁴⁰Ca and the isotope ⁴³Ca as preliminary steps are demonstrated, as well as the next step requirements and current activities for laser cooling, trapping and final spectroscopy of ⁴¹Ca.

References

- [1] D Fink, J Klein, and R Middleton Nucl. Inst. Methods Phys. Res. B 52 572 (1990).
- [2] M Kitaoka, K Jung, Y Yamamoto, T Yoshida, and S Hasegawa J. Anal. At. Spectrom. 28 1648 (2013).
- [3] K Jung, Y Yamamoto, and S Hasegawa Hyperfine Interact. 236 39 (2015).