ナノビーム RHEED によるマイクロパターニング Si 結晶の局所表面構造解析

Surface structure analysis of micropatterned crystalline Si by nano-beam Reflection

High-Energy Electron Diffraction

東北大多元研¹, 阪大産研²,奈良先端大^{3 (M1C)}中塚聡平¹, ^(M2C)今泉太志¹,虻川匡司¹, 服部梓²,田中秀和², Irmikimov Aydar³, 服部賢³

IMRAM, Tohoku Univ.¹, ISIR, Osaka Univ.², NAIST³ ^oSohei Nakatsuka¹, Taishi Imaizumi¹,

Tadashi Abukawa¹, Azusa N. Hattori², Hidekazu Tanaka², Aydar Irmikimov³, Ken Hattori³

E-mail: sohei.nakatsuka.t2@dc.tohoku.ac.jp

1. 諸言

3D ナノデバイスをさらに高性能化するにあたり、物質表面を解析しナノスケールの表面を理解する ことは重要となる。我々は今回、Si(110)基板上にフォトリソグラフィーとエッチングによって(111)面 と(110)面で囲まれた3D マイクロ構造^[1]を作製し、その後基板に直流電流を流し加熱することでマイ クロ構造を変化させ、その表面を走査電子顕微鏡(SEM)とナノ電子ビームを使った反射高速電子回 折法(RHEED)^[2]を用いて観測した。

2. 実験

フォトリソグラフィーで3D マイクロ構造を製作し、通電加熱前に表面構造を観察した。Fig.1(a)に 示したマイクロパターンは、上面が(110)で両サイドがそれに垂直な(111)で囲まれた幅 20µm、高さ 10µm の矩形ロッド構造を基板上に 40µm 間隔で等間隔に作製したもので、ロッドの長軸方向は[1-12]方向と なっている。本研究ではこの Si 基板に 11.0A の電流を流し 1260℃で5秒間加熱し、それを+/-両方向に それぞれ約 100 回ずつおこなった。通電加熱後の基板表面を SEM の電子銃を使ったナノビーム RHEED 装置を用いて SEM 像、回折パターン、暗視野像をそれぞれ観察した。

3. 結果と考察

実験は加熱前後を通じて 10⁻⁸Pa 台まで真空引きした実験チャンバー内でおこなった。加熱前のロッ ドの形状は箱形で角が立ったものとなっており、ナノビーム RHEED による観察では、Si 基板のロッ ド上面の(110)面からは明瞭な 16×2 パターン、ロッド側面の(111)面からは 7×7 パターンがそれぞれ加 熱前のロッドから観察された。16×2は(110)の清浄面、7×7は(111)面の清浄面で観測される超周期構造 である。この後通電加熱をおこなった結果、Fig.1(b)に示すようにロッドの断面は角がとれ丸みを帯び た形状へと変化した。加熱後の基板表面上を 1μm 間隔でナノビーム RHEED 測定を行い各点の回折パ ターンを観察した結果、基板表面からは加熱前には見られなかった様々な特徴的な回折パターンが観 察された。得られた回折パターンを分析したところ、加熱前から表面にもともと見られていた 16×2 パ ターン以外に 6 種類の回折パターンが確認され、基板表面は多数の結晶面に囲まれた構造となってい ることがわかった。回折パターンの傾きからそれぞれの結晶面は(791), (641), (131), (311), (-153), (5-13) 面と見られ、またロッドは左右非対称でなだらかな形状となっていた。それぞれの結晶面が基板表面 に存在する領域を定量的に評価するために我々は新たに実験装置に改良を加え、スポット強度計測装 置を取り付け各回折パターン特有のスポット強度を測定することで、暗視野像の観測を可能にした。 Fig.1(c)に実際に(791)面特有の回折スポットから得られた暗視野像を示す。同じ領域の SEM 像と暗視 野像を比較することでロッド上面の 3 ヶ所に(791)面の領域が線状に存在することがわかる。今回我々 はそれぞれの結晶面から得られる暗視野像を同一領域上で測定し、各結晶面の存在する領域の可視化 を実現した。講演では通電加熱によりロッドの形状が左右非対称に変化した要因に関しても考察する。

Fig.1 (a) SEM image of rectangular rods structure. (b) SEM cross sectional image of rectangular rods structure after 100 times flashes. (c) Dark field image (above), and SEM image (below) of rectangular rods after 100 times flashes.

参考文献

- [1] Azusa N. Hattori, Ken Hattori, Shohei Takemoto, Hiroshi Daimon, and Hidekazu Tanaka, Surf. Sci. 644, 86–90 (2016).
- [2] T. Abukawa, T. Yamasaki, K. Yajima and K. Yoshimura, Phys. Rev. Lett. 97 245502 (2006)
- [3] Y. Yamamoto, S. Ino, T. Ichikawa, Jpn. J. Appl. Phys., 25 (1986), p. L331