SiO₂, Si₃N₄膜へのアルカリ金属・ハロゲンイオンの透過障壁

Penetration barrier of alkali metal and halogen ions into SiO₂ and Si₃N₄ films 三菱電機(株)[○]奥友希, 戸塚正裕, 佐々木肇

Mitsubishi Electric Corporation, Tomoki Oku, Masahiro Totsuka and Hajime Sasaki

E-mail: Oku.Tomoki@ap.MitsubishiElectric.co.jp

はじめに: 我々は保護膜の耐湿性劣化機構の分子軌道計算に よる解析に取り組んでいる. これまで, SiO₂, Si₃N₄膜への H₂O 分子, ハロゲン化水素の透過障壁 $\triangle E$ を計算することで耐湿 性の大小を分析した [1]. しかしながら, アルカリ金属・ハ ロゲンイオンの効果は未検討であった. そこで, SiO₂, Si₃N₄ 膜への Li⁺, Na⁺, K⁺, F, Cl⁻, Br⁻イオンの $\triangle E$ を計算した. 計算: SiO₂, Si₃N₄膜のモデルクラスターに対してイオンの位 置を Fig. 1 に示す様に Distance 方向に動かしながら, 生成熱

を半経験的分子軌道法[2]で計算(方式 PM5)し/E を求めた.

結果: SiO₂膜透過中のイオンの位置と∠E との関係を Fig. 2 に示す. 位置に応じて∠E が周期的 に増減し, 膜中で最大値 (∠Ea) と最小値 (∠H) を有し, ∠Ea は H₂O 分子, K⁺, F, Br, Cl, Na⁺, Li⁺ の順で, ∠H は F, H₂O 分子, Br, Cl, K⁺, Na⁺, Li⁺の順で小さくなることが分かった. 次に, 同様の 計算を Si₃N₄膜に行い, Fig. 3 に示す様に∠Ea と∠H の関係を SiO₂膜の結果とまとめた. 図中の →の始点 (終点) が Si₃N₄膜 (SiO₂膜)に対応する. Si₃N₄膜中では K⁺, H₂O 分子, F, Cl, Br, Na⁺, Li⁺ の順で∠Ea, ∠H は小さくなることが分かった. このことは湿潤環境下で Li⁺, Na⁺が SiO₂, Si₃N₄膜 へ, K⁺が SiO₂膜へ侵入し易いことを意味する. 特に, 侵入した Na⁺や K⁺は SiO₂-Na₂O, SiO₂-K₂O の様なケイ酸ガラスを形成すると考えられる. [1] 奥, 戸塚, 佐々木, 2019 年電子・情報・システ ム部門大会, TC15-3, [2] MO-G Version 1.0.0, Fujitsu limited, Tokyo, Japan (1997).

Fig. 2 Penetration energy (\angle E) of alkali metal and halogen ions and a H₂O molecule into SiO₂ film.

Fig. 3 \triangle Ea and \triangle H during the penetration of alkali metal and halogen ions into SiO₂ and Si₃N₄ films.